Publications by authors named "Naoya Nishi"

The hydration force is indispensable for understanding short-range interfacial forces in aqueous systems. Perturbation of the hydration structure by ions generates an ion-specific hydration force. Surface-force measurements on calcite surfaces have suggested that Na decreases the repulsive hydration force by directly adsorbing the surface and disrupting the hydration layers.

View Article and Find Full Text PDF

Small amphiphilic molecules, such as ethanol, disturb the structure of lipid bilayer membranes to increase the membrane permeability, which is important for applications such as drug delivery, disinfection, and fermentation. To investigate how and the extent to which coexisting salts affect membrane disturbance, we performed molecular dynamics (MD) simulations on lipid bilayer membranes composed of zwitterionic lipids in aqueous ethanol solutions containing 0-631 mM NaCl, KCl, and KI salts. The addition of salts at low concentrations induced cationic adsorption on the lipid membrane, which competes with ethanol adsorption, thereby reducing the hydrogen bonds between ethanol and lipid molecules.

View Article and Find Full Text PDF

It is important to understand the mechanism of colloidal particle assembly near a substrate for development of drug delivery systems, micro-/nanorobots, batteries, heterogeneous catalysts, paints, and cosmetics. Understanding the mechanism is also important for crystallization of the colloidal particles and proteins. In this study, we calculated the physical adsorption of colloidal particles on a flat wall mainly using the integral equation theory, wherein small and large colloidal particles were employed.

View Article and Find Full Text PDF

The structure at the electrochemical liquid/liquid interface between water (W) and trioctylmethylammonium bis(nonafluorobutanesulfonyl)amide, a hydrophobic ionic liquid (IL), was studied using molecular dynamics (MD) simulation in which the interfacial potential difference was controlled. On the IL side of the IL/W interface, ionic multilayers were found in the number density distribution of IL ions whereas monolayer-thick charge accumulation was found in the charge density distribution. This suggests that the potential screening is completed within the first ionic layer and the effect of overlayers on the potential is marginal.

View Article and Find Full Text PDF

Au nanofiber/carbon nanotube (CNT) 1D/1D composites and Janus-type Au/CNT composites have been prepared by utilizing the liquid/liquid interface between water (W) and a hydrophobic ionic liquid (IL) as a redox reaction site. AuCl in W is reduced at the IL/W interface where CNTs are adsorbed, by a reducing agent in the IL, leading to the formation of the Au/CNT composites. The Au/CNT composites are Janus-type in which Au microurchins and Au nanofibers are deposited on the W side and the IL side of the CNTs on the IL/W interface, respectively.

View Article and Find Full Text PDF

Molecular dynamic (MD) simulations have been performed for 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ([Cmim][TFSA]), an ionic liquid (IL), on a charged graphene electrode to achieve the quantitative analysis of the static differential capacitance using the electrochemical surface plasmon resonance (ESPR). The MD simulations have provided the surface charge density on the electrode and ionic distributions in the electric double layer, both of which are indispensable for the evaluation of static differential capacitance using ESPR but are difficult to be measured by experimental techniques. This approach has allowed the quantitative analysis and explanation of the SPR angle shift in ESPR.

View Article and Find Full Text PDF

Atomic force microscopy can observe structures of liquids (solvents) on solid surfaces as oscillating force curves. The oscillation originates from the solvation force, which is affected by the interaction between the probe, substrate, and solvents. To investigate the effects of the interactions on the force curve, we calculated the force curves by integral equation theory with various probe and substrate conditions.

View Article and Find Full Text PDF

Aiming at the evaluation of the viscosity of the interfacial solidlike structure of ionic liquids (ILs), we performed total internal reflection fluorescence (TIRF) spectroscopy for ,-diethyl-'-phenyl-rhodamine (Ph-DER), a fluorescent probe that is sensitive to viscosity in a high-viscosity range. TIRF spectra at the glass interface of trioctylmethylammonium bis(nonafluorobutanesulfonyl)amide (TOMAC4C4N), a hydrophobic IL, showed that the fluorescence intensity of Ph-DER increases with the decrease of the evanescence penetration depth, suggesting that there exists a high-viscosity region at the interface. In contrast, glycerol, which is a molecular liquid with a bulk viscosity similar to that of TOMAC4C4N, did not show such a fluorescence increase, supporting that the formation of a highly viscous solidlike structure at the interface is intrinsic to ILs.

View Article and Find Full Text PDF

Electrochemical surface plasmon resonance (ESPR) is applied to evaluate the relative static differential capacitance at the interface between 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ionic liquid (IL) and a gold electrode, based on the relationship between the SPR angle and surface charge density on the electrode. Potential-step and potential-scan ESPR measurements are used to probe the dynamics of the electric double layer (EDL) structure that exhibit anomalously slow and asymmetrical characteristics depending on the direction of potential perturbation. EDL dynamics respond at least 30 times more slowly to changes of potential in the positive direction than in the negative direction.

View Article and Find Full Text PDF

Highly correlated positioning of ions underlies Coulomb interactions between ions and electrified interfaces within dense ionic fluids such as biological cells and ionic liquids. Recent work has shown that highly correlated ionic systems behave differently than dilute electrolyte solutions, and interest is focused upon characterizing the electrical and structural properties of the dense electrical double layers (EDLs) formed at internal interfaces. It has been a challenge for experiments to characterize the progressive development of the EDL on the nanoscale as the interfacial electric potential is varied over a range of positive and negative values.

View Article and Find Full Text PDF

A molecular dynamics simulation at the electrode interface of a quaternary ammonium ionic liquid, tributylmethylammonium bis(trifluoromethanesulfonyl)amide ([N][TFSA]), has been performed. Unlike the commonly used cations, such as 1-alkyl-3-methylimidazolium and 1,1-alkylmethylpyrrolidinium cations, N has multiple long-alkyl groups (three butyl groups). The behavior of ions at the electrode interface, especially these butyl groups, has been investigated.

View Article and Find Full Text PDF

Vertically aligned Pd nanofiber arrays (NFAs) have been prepared at the liquid-liquid interface between redox-active ionic liquid (RAIL) and water (W) via a template-free manner. The RAIL with high hydrophobicity, (ferrocenylmethyl)dodecyldimethylammonium bis(nonafluorobutanesulfonyl)amide, plays dual roles of reducing agent for Pd precursor ions and the hydrophobic liquid phase simultaneously, and the RAIL|W interface has been utilized as the formation site for the spontaneous growth of Pd NFAs. The Pd NFAs consist of three parts: layers formed by partly connected particles on the top, NFAs in the middle, and firm sheetlike layers on the bottom.

View Article and Find Full Text PDF

Colloidal probe atomic force microscopy (CP-AFM) can be used for measuring force curves between the colloidal probe and the substrate in a colloidal suspension. In the experiment, an oscillatory force curve reflecting the layer structure of the colloidal particles on the substrate is usually obtained. However, the force curve is not equivalent to the interfacial structure of the colloidal particles.

View Article and Find Full Text PDF

Janus-type Au/polythiophene (PT) composites have been prepared by utilizing the liquid/liquid interface between water (W) and a hydrophobic ionic liquid (IL) as the redox reaction site. AuCl is reductively deposited, and terthiophene is oxidatively polymerized spacio-selectively at the IL|W interface, leading to the formation of the Au/PT composites. The composites are Janus-type Au-attached PT plates with two surface morphologies, flat surface and flowerlike surface at the W and IL sides of the plates at the IL|W interface, respectively.

View Article and Find Full Text PDF

An ionic liquid forms a characteristic solvation structure on a substrate. For example, when the surface of the substrate is negatively or positively charged, cation and anion layers are alternately aligned on the surface. Such a solvation structure is closely related to slow diffusion, high electric capacity, and chemical reactions at the interface.

View Article and Find Full Text PDF

Based on molecular dynamics simulations of eight ions (Na, K, Rb, Cs, Mg, Ca, Sr, and Ba) on muscovite mica surfaces in water, we demonstrate that experimental data on the muscovite mica surface can be rationalized through a unified picture of adsorption structures including the hydration structure, cation heights from the muscovite surface, and state stability. These simulations enable us to categorize the inner-sphere surface complex into two different species: an inner-sphere surface complex in a ditrigonal cavity (IS1) and that on top of Al (IS2). By considering the presence of the two inner-sphere surface complexes, the experimental finding that the heights of adsorbed cations from the muscovite surface are proportional to the ionic radius for K and Cs but inversely proportional to the ionic radius for Ca and Ba was explained.

View Article and Find Full Text PDF

Some colloidal suspensions contain two types of particles-small and large particles-to improve the lubricating ability, light absorptivity, and so forth. Structural and chemical analyses of such colloidal suspensions are often performed to understand their properties. In a structural analysis study, the observation of the number density distribution of small particles around a large particle (g) is difficult because these particles are randomly moving within the colloidal suspension by Brownian motion.

View Article and Find Full Text PDF

Correction for 'Number density distribution of solvent molecules on a substrate: a transform theory for atomic force microscopy' by Ken-ichi Amano et al., Phys. Chem.

View Article and Find Full Text PDF

Atomic force microscopy (AFM) in liquids can measure a force curve between a probe and a buried substrate. The shape of the measured force curve is related to hydration structure on the substrate. However, until now, there has been no practical theory that can transform the force curve into the hydration structure, because treatment of the liquid confined between the probe and the substrate is a difficult problem.

View Article and Find Full Text PDF

With the development of atomic force microscopy (AFM), it is now possible to detect the buried liquid-solid interfacial structure in three dimensions at the atomic scale. One of the model surfaces used for AFM is the muscovite surface because it is atomically flat after cleavage along the basal plane. Although it is considered that force profiles obtained by AFM reflect the interfacial structures (e.

View Article and Find Full Text PDF

Gold nanofibers have been found to be formed via a heterogeneous electron-transfer reaction at the ionic liquid|water interface. The tips of the nanofibers show a dendritic structure and the dendrites are bundled to nanofibers except around the tips. The roles of the ionic liquid for the dendritic nanofiber formation have been discussed.

View Article and Find Full Text PDF

Self-organization plays an imperative role in recent materials science. Highly tunable, periodic structures based on dynamic self-organization at micrometer scales have proven difficult to design, but are desired for the further development of micropatterning. In the present study, we report a microgroove array that spontaneously forms on a p-type silicon surface during its electrodissolution.

View Article and Find Full Text PDF

The structure of ionic liquids (ILs) at the electrochemical IL|Hg interface has been studied using the pendant drop method. From the electrocapillarity (potential dependence of interfacial tension) differential capacitance (Cd) at zero frequency (in other words, static differential capacitance or differential capacitance in equilibrium) has been evaluated. The potential dependence of zero-frequency Cd at the IL|Hg interface exhibits one or two local maxima near the potential of zero charge (Epzc), depending on the cation of the ILs.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session1hj6d2kqdr0g4fa0du3h4k5j776ti63l): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once