Development of efficient electrocatalysts for hydrogen evolution reactions (HERs) is necessary to achieve environmentally friendly and sustainable hydrogen production. To reduce cost and to circumvent the scarcity of platinum, the most efficient catalyst for HER, it is essential to develop catalysts using ubiquitous base metals or minimal amounts of precious metals. Bis(diimino)metal (MDI) coordination nanosheets are potential HER catalysts because their electric conductivities, two-dimensionality, and porous structures provide large surface areas and efficient mass and electron transfer.
View Article and Find Full Text PDFIonic polymers are intriguing materials whose functionality arises from the synergy between ionic polymer backbones and counterions. A key method for enhancing their functionality is the post-synthetic ion-exchange reaction, which is instrumental in improving the chemical and physical properties of polymer backbones and introducing of the functionalities of the counterions. Electronic interaction between host polymer backbone and guest ions plays pivotal roles in property modulation.
View Article and Find Full Text PDFAlternative strategies to design sustainable-element-based electrocatalysts enhancing oxygen evolution reaction (OER) kinetics are demanded to develop affordable yet high-performance water-electrolyzers for green hydrogen production. Here, it is demonstrated that the spontaneous-spin-polarized 2D π-d conjugated framework comprising abundant elements of nickel and iron with a ratio of Ni:Fe = 1:4 with benzenehexathiol linker (BHT) can improve OER kinetics by its unique electronic property. Among the bimetallic NiFe-BHTs with various ratios with Ni:Fe = x:y, the NiFe-BHT exhibits the highest OER activity.
View Article and Find Full Text PDFHeterostructures of two-dimensional materials realise novel and enhanced physical phenomena, making them attractive research targets. Compared to inorganic materials, coordination nanosheets have virtually infinite combinations, leading to tunability of physical properties and are promising candidates for heterostructure fabrication. Although stacking of coordination materials into vertical heterostructures is widely reported, reports of lateral coordination material heterostructures are few.
View Article and Find Full Text PDFRecent studies on molecular 2D materials with high tunability of structure and function have focused mostly on the discovery of new precursors. Here, we demonstrate a facile one-pot synthesis of laminated 2D coordination polymer films comprising bis(terpyridine)iron and cobalt at a water/dichloromethane interface. Cross-sectional elemental mapping unveiled the stratum-like structure of the film and revealed that the second layer grows to the dichloromethane side below the first layer.
View Article and Find Full Text PDFCoordination nanosheets are an emerging class of 2D, bottom-up materials having fully π-conjugated, planar, graphite-like structures with high electrical conductivities. Since their discovery, great effort has been devoted to expand the variety of coordination nanosheets; however, in most cases, their low crystallinity in thick films hampers practical device applications. In this study, mixtures of nickel and copper ions are employed to fabricate benzenehexathiolato (BHT)-based coordination nanosheet films, and serendipitously, it is found that this heterometallicity preferentially forms a structural phase with improved film crystallinity.
View Article and Find Full Text PDFα-synuclein (αSyn) is a protein known to form intracellular aggregates during the manifestation of Parkinson's disease. Previously, it was shown that αSyn aggregation was strongly suppressed in the midbrain region of mice that did not possess the gene encoding the lipid transport protein fatty acid binding protein 3 (FABP3). An interaction between these two proteins was detected in vitro, suggesting that FABP3 may play a role in the aggregation and deposition of αSyn in neurons.
View Article and Find Full Text PDFOligomerization and/or aggregation of α-synuclein (α-Syn) triggers α-synucleinopathies such as Parkinson's disease and dementia with Lewy bodies. It is known that α-Syn can spread in the brain like prions; however, the mechanism remains unclear. We demonstrated that fatty acid binding protein 3 (FABP3) promotes propagation of α-Syn in mouse brain.
View Article and Find Full Text PDFTwo-dimensional (2D) vdW materials have been integrated into optoelectronic devices to achieve exceptional functionality. However, the integration of large-area 2D thin films into organic light-emitting devices (OLEDs) remains challenging because of the finite number of inorganic 2D materials and the high-temperature requirements of their deposition process. The construction of 2D organometallic materials holds immense potential because of their solution synthesis and unlimited structural and functional diversity.
View Article and Find Full Text PDFHeat shock proteins play roles in assisting other proteins to fold correctly and in preventing the aggregation and accumulation of proteins in misfolded conformations. However, the process of aging significantly degrades this ability to maintain protein homeostasis. Consequently, proteins with incorrect conformations are prone to aggregate and accumulate in cells, and this aberrant aggregation of misfolded proteins may trigger various neurodegenerative diseases, such as Parkinson's disease.
View Article and Find Full Text PDFGraphdiyne (GDY), a 2D allotrope of graphene, is first synthesized in 2010 and has attracted attention as a new low-dimensional carbon material. This work surveys the literature on GDYs. The history of GDYs is summarized, including their relationship with 2D graphyne carbons and yearly publication trends.
View Article and Find Full Text PDFThe construction of two-dimensional metal complex materials is fascinating because of the structural and functional diversity of these materials. Previously, we have reported the synthesis of electroconductive nickelladithiolene (NiDT) and palladadithiolene (PdDT) nanosheets using benzenehexathiol (BHT). Down the group from Ni, Pd to Pt, there is a distinct positive shift in the reduction potential; as a result, it becomes synthetically more challenging to stabilize Pt than to form metallic Pt(0) in the presence of BHT as a reducing agent.
View Article and Find Full Text PDFFew artificial systems can be exfoliated into, and observed as, single wires with lengths of more than several micrometers, and no previous example features a copolymer structure; this is in contrast with biopolymers such as single-strand DNAs. Here, we create a set of one-dimensional coordination copolymers featuring bis(dipyrrinato)zinc complex motifs in the main chain. A series of random copolymers is synthesized from two types of bridging dipyrrin proligand and zinc acetate, with various molar ratios between the proligands.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2019
Graphdiyne (GDY) comprises an important class in functional covalent organic nanosheets based on carbon-carbon bond formation, and recent focus has collected in the expansion of its variations. Here we report on the synthesis of a GDY analogue, TP-GDY, which has triphenylene as the aromatic core. Our liquid/liquid interfacial synthesis for GDY ( J.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
March 2018
Amyloid fibrillation causes serious neurodegenerative diseases and amyloidosis; however, the detailed mechanisms by which the structural states of precursor proteins in a lipid membrane-associated environment contribute to amyloidogenesis still remains to be elucidated. We examined the relationship between structural states of intrinsically-disordered wild-type and mutant α-synuclein (αSN) and amyloidogenesis on two-types of model membranes. Highly-unstructured wild-type αSN (αSN) and a C-terminally-truncated mutant lacking negative charges (αSN) formed amyloid fibrils on both types of membranes, the model membrane mimicking presynaptic vesicles (Mimic membrane) and the model membrane of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC membrane).
View Article and Find Full Text PDFThe isolated apical domain of the Escherichia coli GroEL subunit displays the ability to suppress the irreversible fibrillation of numerous amyloid-forming polypeptides. In previous experiments, we have shown that mutating Gly-192 (located at hinge II that connects the apical domain and the intermediate domain) to a tryptophan results in an inactive chaperonin whose apical domain is disoriented. In this study, we have utilized this disruptive effect of Gly-192 mutation to our advantage, by substituting this residue with amino acid residues of varying van der Waals volumes with the intent to modulate the affinity of GroEL toward fibrillogenic peptides.
View Article and Find Full Text PDFThe aggregation and deposition of α-synuclein (αSyn) in neuronal cells is correlated to pathogenesis of Parkinson's disease. Although the mechanism of αSyn aggregation and fibril formation has been studied extensively, the structural hallmarks that are directly responsible for toxicity toward cells are still under debate. Here, we have compared the structural characteristics of the toxic intermediate molecular species of αSyn and similar toxic species of another protein, GroES, using coherent X-ray diffraction analysis.
View Article and Find Full Text PDFIn E. coli cells, rescue of non-native proteins and promotion of native state structure is assisted by the chaperonin GroEL. An important key to this activity lies in the structure of the apical domain of GroEL (GroEL-AD) (residue 191-376), which recognizes and binds non-native protein molecules through hydrophobic interactions.
View Article and Find Full Text PDFA bulk material comprising stacked nanosheets of nickel bis(dithiolene) complexes is investigated. The average oxidation number is -3/4 for each complex unit in the as-prepared sample; oxidation or reduction respectively can change this to 0 or -1. Refined electrical conductivity measurement, involving a single microflake sample being subjected to the van der Pauw method under scanning electron microscopy control, reveals a conductivity of 1.
View Article and Find Full Text PDFThe co-chaperonin GroES (Hsp10) works with chaperonin GroEL (Hsp60) to facilitate the folding reactions of various substrate proteins. Upon forming a specific disordered state in guanidine hydrochloride, GroES is able to self-assemble into amyloid fibrils similar to those observed in various neurodegenerative diseases. GroES therefore is a suitable model system to understand the mechanism of amyloid fibril formation.
View Article and Find Full Text PDF