Publications by authors named "Naoto Yokoya"

The foundation model has recently garnered significant attention due to its potential to revolutionize the field of visual representation learning in a self-supervised manner. While most foundation models are tailored to effectively process RGB images for various visual tasks, there is a noticeable gap in research focused on spectral data, which offers valuable information for scene understanding, especially in remote sensing (RS) applications. To fill this gap, we created for the first time a universal RS foundation model, named SpectralGPT, which is purpose-built to handle spectral RS images using a novel 3D generative pretrained transformer (GPT).

View Article and Find Full Text PDF

Neural radiance fields have made a remarkable breakthrough in the novel view synthesis task at the 3D static scene. However, for the 4D circumstance (e.g.

View Article and Find Full Text PDF

With the advancement of global civilisation, monitoring and managing dumpsites have become essential parts of environmental governance in various countries. Dumpsite locations are difficult to obtain in a timely manner by local government agencies and environmental groups. The World Bank shows that governments need to spend massive labour and economic costs to collect illegal dumpsites to implement management.

View Article and Find Full Text PDF

Coded aperture snapshot spectral imaging (CASSI) is a promising technique for capturing three-dimensional hyperspectral images (HSIs), in which algorithms are used to perform the inverse problem of HSI reconstruction from a single coded two-dimensional (2D) measurement. Due to the ill-posed nature of this problem, various regularizers have been exploited to reconstruct 3D data from 2D measurements. Unfortunately, the accuracy and computational complexity are unsatisfactory.

View Article and Find Full Text PDF

Over the past decades, enormous efforts have been made to improve the performance of linear or nonlinear mixing models for hyperspectral unmixing (HU), yet their ability to simultaneously generalize various spectral variabilities (SVs) and extract physically meaningful endmembers still remains limited due to the poor ability in data fitting and reconstruction and the sensitivity to various SVs. Inspired by the powerful learning ability of deep learning (DL), we attempt to develop a general DL approach for HU, by fully considering the properties of endmembers extracted from the hyperspectral imagery, called endmember-guided unmixing network (EGU-Net). Beyond the alone autoencoder-like architecture, EGU-Net is a two-stream Siamese deep network, which learns an additional network from the pure or nearly pure endmembers to correct the weights of another unmixing network by sharing network parameters and adding spectrally meaningful constraints (e.

View Article and Find Full Text PDF

Conventional nonlinear subspace learning techniques (e.g., manifold learning) usually introduce some drawbacks in explainability (explicit mapping) and cost effectiveness (linearization), generalization capability (out-of-sample), and representability (spatial-spectral discrimination).

View Article and Find Full Text PDF

Non-local low-rank tensor approximation has been developed as a state-of-the-art method for hyperspectral image (HSI) restoration, which includes the tasks of denoising, compressed HSI reconstruction and inpainting. Unfortunately, while its restoration performance benefits from more spectral bands, its runtime also substantially increases. In this paper, we claim that the HSI lies in a global spectral low-rank subspace, and the spectral subspaces of each full band patch group should lie in this global low-rank subspace.

View Article and Find Full Text PDF

This paper addresses the problem of semi-supervised transfer learning with limited cross-modality data in remote sensing. A large amount of multi-modal earth observation images, such as multispectral imagery (MSI) or synthetic aperture radar (SAR) data, are openly available on a global scale, enabling parsing global urban scenes through remote sensing imagery. However, their ability in identifying materials (pixel-wise classification) remains limited, due to the noisy collection environment and poor discriminative information as well as limited number of well-annotated training images.

View Article and Find Full Text PDF

Interferometric phase restoration has been investigated for decades and most of the state-of-the-art methods have achieved promising performances for InSAR phase restoration. These methods generally follow the nonlocal filtering processing chain, aiming at circumventing the staircase effect and preserving the details of phase variations. In this article, we propose an alternative approach for InSAR phase restoration, that is, Complex Convolutional Sparse Coding (ComCSC) and its gradient regularized version.

View Article and Find Full Text PDF

Although many spectral unmixing models have been developed to address spectral variability caused by variable incident illuminations, the mechanism of the spectral variability is still unclear. This paper proposes an unmixing model, named illumination invariant spectral unmixing (IISU). IISU makes the first attempt to use the radiance hyperspectral data and a LiDAR-derived digital surface model (DSM) in order to physically explain variable illuminations and shadows in the unmixing framework.

View Article and Find Full Text PDF

Hyperspectral dimensionality reduction (HDR), an important preprocessing step prior to high-level data analysis, has been garnering growing attention in the remote sensing community. Although a variety of methods, both unsupervised and supervised models, have been proposed for this task, yet the discriminative ability in feature representation still remains limited due to the lack of a powerful tool that effectively exploits the labeled and unlabeled data in the HDR process. A semi-supervised HDR approach, called iterative multitask regression (IMR), is proposed in this paper to address this need.

View Article and Find Full Text PDF

Mixed noise (such as Gaussian, impulse, stripe, and deadline noises) contamination is a common phenomenon in hyperspectral imagery (HSI), greatly degrading visual quality and affecting subsequent processing accuracy. By encoding sparse prior to the spatial or spectral difference images, total variation (TV) regularization is an efficient tool for removing the noises. However, the previous TV term cannot maintain the shared group sparsity pattern of the spatial difference images of different spectral bands.

View Article and Find Full Text PDF

In this paper, we aim at tackling a general but interesting cross-modality feature learning question in remote sensing community- Traditional semi-supervised manifold alignment methods do not perform sufficiently well for such problems, since the hyperspectral data is very expensive to be largely collected in a trade-off between time and efficiency, compared to the multispectral data. To this end, we propose a novel semi-supervised cross-modality learning framework, called learnable manifold alignment (LeMA). LeMA learns a joint graph structure directly from the data instead of using a given fixed graph defined by a Gaussian kernel function.

View Article and Find Full Text PDF

Hyperspectral imagery collected from airborne or satellite sources inevitably suffers from spectral variability, making it difficult for spectral unmixing to accurately estimate abundance maps. The classical unmixing model, the linear mixing model (LMM), generally fails to handle this sticky issue effectively. To this end, we propose a novel spectral mixture model, called the augmented linear mixing model (ALMM), to address spectral variability by applying a data-driven learning strategy in inverse problems of hyperspectral unmixing.

View Article and Find Full Text PDF

Remote sensing hyperspectral images (HSIs) are quite often low rank, in the sense that the data belong to a low dimensional subspace/manifold. This has been recently exploited for the fusion of low spatial resolution HSI with high spatial resolution multispectral images in order to obtain super-resolution HSI. Most approaches adopt an unmixing or a matrix factorization perspective.

View Article and Find Full Text PDF

Hyperspectral imaging sensors suffer from spectral and spatial misregistrations due to optical-system aberrations and misalignments. These artifacts distort spectral signatures that are specific to target objects and thus reduce classification accuracy. The main objective of this work is to detect and correct spectral and spatial misregistrations of hyperspectral images.

View Article and Find Full Text PDF