Cancer vaccines are expected to be next breakthrough in cancer immunotherapy. In cancer vaccines, adjuvants play an important role by enhancing and reshaping tumor antigen-specific immune responses. Failures in previous cancer vaccine clinical trials can be attributed to inappropriate selection and design of tumor antigens and adjuvants.
View Article and Find Full Text PDFOligodeoxynucleotides (ODNs) containing unmethylated cytosine-phosphate-guanosine (CpG) motifs are readily recognized by Toll-like receptor 9 on immune cells, trigger an immunomodulatory cascade, induce a Th1 -biased immune milieu, and have great potential as an adjuvant in cancer vaccines. In this study, a green one-step synthesis process was adopted to prepare an amino-rich metal-organic nanoplatform (FN). The synthesized FN nanoplatform can simultaneously and effectively load model tumor antigens (OVA)/autologous tumor antigens (dLLC) and immunostimulatory CpG ODNs with an unmodified PD backbone and a guanine quadruplex structure to obtain various cancer vaccines.
View Article and Find Full Text PDFToll-like receptor 9 (TLR-9) is a protein that helps our immune system identify specific DNA types. Upon detection, CpG oligodeoxynucleotides signal the immune system to generate cytokines, essential proteins that contribute to the body's defence against infectious diseases. Native phosphodiester type B CpG ODNs induce only Interleukin-6 with no effect on interferon-α.
View Article and Find Full Text PDFSolution-processed colloidal III-V semiconductor quantum dot photodiodes (QPDs) have potential applications in short-wavelength infrared (SWIR) imaging due to their tunable spectral response range, possible multiple-exciton generation, operation at 0-V bias voltage and low-cost fabrication and are also expected to replace lead- and mercury-based counterparts that are hampered by reliance on restricted elements (RoHS). However, the use of III-V CQDs as photoactive layers in SWIR optoelectronic applications is still a challenge because of underdeveloped ligand engineering for improving the in-plane conductivity of the QD assembled films. Here, we report on ligand engineering of InSb CQDs to enhance the optical response performance of self-powered SWIR QPDs.
View Article and Find Full Text PDFBackground: Considering the diversity of tumors, it is of great significance to develop a simple, effective, and low-cost method to prepare personalized cancer vaccines.
Methods: In this study, a facile one-pot synthetic route was developed to prepare cancer vaccines using model antigen or autologous tumor antigens based on the coordination interaction between Fe ions and endogenous fumarate ligands.
Results: Herein, Fe-based metal organic framework can effectively encapsulate tumor antigens with high loading efficiency more than 80%, and act as both delivery system and adjuvants for tumor antigens.
Semiconductor nanocrystals or quantum dots (QDs) have gained significant attention in biomedical research as versatile probes for imaging, sensing, and therapies. However, the interactions between proteins and QDs, which are crucial for their use in biological applications, are not yet fully understood. Asymmetric flow field-flow fractionation (AF4) is a promising method for analyzing the interactions of proteins with QDs.
View Article and Find Full Text PDFIn recent years, the field of nanomaterials has exponentially expanded with versatile biological applications. However, one of the roadblocks to their clinical translation is the critical knowledge gap about how the nanomaterials interact with the biological microenvironment (nano-bio interactions). When nanomaterials are used as drug carriers or contrast agents for biological imaging, the nano-bio interaction-mediated protein conformational changes and misfolding could lead to disease-related molecular alterations and/or cell death.
View Article and Find Full Text PDFSolution-processed, cadmium-free quantum dot (QD) photodiodes are compatible with printable optoelectronics and are regarded as a potential candidate for wavelength-selective optical sensing. However, a slow response time resulting from low carrier mobility and a poor dissociation of charge carriers in the optically active layer has hampered the development of the QD photodiodes with nontoxic device constituents. Herein, we report the first InP-based photodiode with a multilayer device architecture, working in photovoltaic mode in photodiode circuits.
View Article and Find Full Text PDFDespite bulk crystals of silicon (Si) being indirect bandgap semiconductors, their quantum dots (QDs) exhibit the superior photoluminescence (PL) properties including high quantum yield (PLQY > 50%) and spectral tunability in a broad wavelength range. Nevertheless, their low optical absorbance character inhibits the bright emission from the SiQDs for phosphor-type light emitting diodes (LEDs). In contrast, a strong electroluminescence is potentially given by serving SiQDs as an emissive layer of current-driven LEDs with (Si-QLEDs) because the charged carriers are supplied from electrodes unlike absorption of light.
View Article and Find Full Text PDFThis article reports the development of highly waterborne silicon quantum dots (Si QDs) terminated with a reactive group for grafting of biomolecules. Hydrogen-terminated QDs were prepared by thermal disproportionation of amorphous hydrogen silsesquioxane derived from triethoxysilane followed by hydrofluoric etching. Next, the hydrogenated Si surfaces were exposed to 10-undecenoic acid at different temperatures in Ar atmosphere, yielding the termination of the QDs with a carboxyl group.
View Article and Find Full Text PDFLong-term stability of microbubbles is crucial to their effectiveness. Using a new microfluidic device connecting three T-junction channels of 100 μm in series, stable monodisperse SiQD-loaded bovine serum albumin (BSA) protein microbubbles down to 22.8 ± 1.
View Article and Find Full Text PDFWe report, for the first time, that the coherent growth of zinc sulfide (ZnS) on a colloidal indium phosphide (InP) quantum dot (QD) yields a InP/ZnS core/shell structure with a single lattice constant of 0.563 nm. Compared to the bulk crystal of zinc-blend (cubic) InP, the lattice of the core QD is compressed by 4.
View Article and Find Full Text PDFChromophores that generate singlet oxygen (O) in water are essential to developing noninvasive disease treatments using photodynamic therapy (PDT). A facile approach for formation of stable colloidal nanoparticles of O photosensitizers, which exhibit aggregation enhanced O generation in water toward applications as PDT agents, is reported. Chromophore encryption within a fuchsonarene macrocyclic scaffold insulates the photosensitizer from aggregation induced deactivation pathways, enabling a higher chromophore density than typical O generating nanoparticles.
View Article and Find Full Text PDFWe report carboxy-terminated silicon quantum dots (SiQDs) that exhibit high solubility in water due to the high molecular coverage of surface monolayers, bright light emission with high photoluminescence quantum yields (PLQYs), long-term stability in the PL property for monitoring cells, less toxicity to the cells, and a high photothermal response. We prepared water-soluble SiQDs by the thermal hydrosilylation of 10-undecenoic acid on their hydrogen-terminated surfaces, provided by the thermal disproportionation of triethoxysilane hydrolyzed at pH 3 and subsequent hydrofluoric etching. The 10-undecanoic acid-functionalized SiQDs (UA:SiQDs) showed long-term stability in hydrophilic solvents including ethanol and water (pH 7).
View Article and Find Full Text PDFCesium tin halide (CsSnX, where X is halogen) perovskite nanocrystals (NCs) are one of the most representative alternatives to their lead-based cousins. However, a fundamental understanding of how to regulate the growth kinetics of colloidal CsSnX NCs is still lacking and, specifically, the role of surfactants in affecting their growth kinetics remains incompletely understood. Here we report a general approach for colloidal synthesis of CsSnX perovskite NCs through a judicious combination of capping agents.
View Article and Find Full Text PDFThe synthesis of highly luminescent colloidal CsSnX (X = halogen) perovskite nanocrystals (NCs) remains a long-standing challenge due to the lack of a fundamental understanding of how to rationally suppress the formation of structural defects that significantly influence the radiative carrier recombination processes. Here, we develop a theory-guided, general synthetic concept for highly luminescent CsSnX NCs. Guided by density functional theory calculations and molecular dynamics simulations, we predict that, although there is an opposing trend in the chemical potential-dependent formation energies of various defects, highly luminescent CsSnI NCs with narrow emission could be obtained through decreasing the density of tin vacancies.
View Article and Find Full Text PDFA better understanding of the compatibility of water-soluble semiconductor quantum dots (QDs) upon contact with the bloodstream is important for biological applications, including biomarkers working in the first therapeutic spectral window for deep tissue imaging. Herein, we investigated the conformational changes of blood plasma proteins during the interaction with near-infrared light-emitting nanoparticles, consisting of Pluronic F127 shells and cores comprised of assembled silicon QDs terminated with decane monolayers. Albumin and transferrin have high quenching constants and form a hard protein corona on the nanoparticle.
View Article and Find Full Text PDFDriven by the emergence of colloidal semiconductor quantum dots (QDs) of tunable emission wavelengths, characteristic of exciton absorption peaks, outstanding photostability and solution processability in device fabrication have become a key tool in the development of nanomedicine and optoelectronics. Diamond cubic crystalline silicon (Si) QDs, with a diameter larger than 2 nm, terminated with hydrogen atoms are known to exhibit bulk-inherited spin and valley properties. Herein, we demonstrate a newly discovered size region of Si QDs, in which a fast radiative recombination on the order of hundreds of picoseconds is responsible for photoluminescence (PL).
View Article and Find Full Text PDFSilver nanowires (Ag NWs) as transparent conducting electrodes are widely used in many applications such as organic light-emitting diodes (OLEDs), polymer light-emitting diodes, touch screens, solar cells, and transparent heaters. In this work, using a large-scale synthesis, the synthesized Ag NWs had a high aspect ratio of 2820. The Ag NWs could be applied as a top transparent electrode in a device by simple drop-casting without any post-processing steps.
View Article and Find Full Text PDFVertically formed and well-defined SnO nanosheets are easy to fabricate, involving only a single process that is performed under moderate conditions. In this study, two different sizes of a SnO nanosheet were concurrently formed on a Pt interdigitated electrode chip, with interconnections between the two. As the SnO nanosheets were grown over time, the interconnections became stronger.
View Article and Find Full Text PDFHere we report a quantum dot light emitting diode (QLED), in which a layer of colloidal silicon quantum dots (SiQDs) works as the optically active component, exhibiting a strong electroluminescence (EL) spectrum peaking at 620 nm. We could not see any fluctuation of the EL spectral peak, even in air, when the operation voltage varied in the range from 4 to 5 V because of the possible advantage of the inverted device structure. The pale-orange EL spectrum was as narrow as 95 nm.
View Article and Find Full Text PDFProtein conformational changes are associated with potential cytotoxicity upon interaction with small molecules or nanomaterials. Protein misfolding leads to protein-mediated diseases; thus, it is important to study the conformational changes in proteins using nanoparticles as drug carriers. In this study, the conformational changes in hemoglobin and thrombin were observed using fluorescence spectroscopy, circular dichroism spectroscopy and molecular modelling studies after interaction with non-toxic, water-soluble near-infrared silicon quantum dot micelles.
View Article and Find Full Text PDFSci Technol Adv Mater
April 2019
Luminescence probe has been broadly used for bio-imaging applications. Among them, near-infrared (NIR) quantum dots (QDs) are more attractive due to minimal tissue absorbance and larger penetration depth. Above said reasons allowed whole animal imaging without slice scan or dissection.
View Article and Find Full Text PDF