Purpose: To understand real-world eye drop adherence among glaucoma patients and evaluate the performance of our proposed cloud-based support for eye drop adherence (CASEA).
Design: Prospective, observational case series.
Methods: The Department of Ophthalmology at Tsukazaki Hospital.
Purpose: We demonstrated real-time evaluation technology for cataract surgery using artificial intelligence (AI) to residents and supervising doctors (doctors), and performed a comparison between the two groups in terms of risk indicators and duration for two of the important processes of surgery, continuous curvilinear capsulorhexis (CCC) and phacoemulsification (Phaco).
Materials And Methods: Each of three residents with operative experience of fewer than 100 cases, and three supervising doctors with operative experience of 1000 or more cases, performed cataract surgeries on three cases, respectably, a total of 18 cases. The mean values of the risk indicators in the CCC and Phaco processes measured in real-time during the surgery were statistically compared between the residents' group and the doctors' group.
Surgical skill levels of young ophthalmologists tend to be instinctively judged by ophthalmologists in practice, and hence a stable evaluation is not always made for a single ophthalmologist. Although it has been said that standardizing skill levels presents difficulty as surgical methods vary greatly, approaches based on machine learning seem to be promising for this objective. In this study, we propose a method for displaying the information necessary to quantify the surgical techniques of cataract surgery in real-time.
View Article and Find Full Text PDFThe present study aimed to conduct a real-time automatic analysis of two important surgical phases, which are continuous curvilinear capsulorrhexis (CCC), nuclear extraction, and three other surgical phases of cataract surgery using artificial intelligence technology. A total of 303 cases of cataract surgery registered in the clinical database of the Ophthalmology Department of Tsukazaki Hospital were used as a dataset. Surgical videos were downsampled to a resolution of 299 × 168 at 1 FPS to image each frame.
View Article and Find Full Text PDFAssociative memory networks based on quaternionic Hopfield neural network are investigated in this paper. These networks are composed of quaternionic neurons, and input, output, threshold, and connection weights are represented in quaternions, which is a class of hypercomplex number systems. The energy function of the network and the Hebbian rule for embedding patterns are introduced.
View Article and Find Full Text PDF