Publications by authors named "Naotaka Izumiyama-Shimomura"

Article Synopsis
  • The study investigates telomere length changes in neurons and glial cells in the human brain, focusing on differences related to age.
  • In adults, neurons had longer telomeres compared to glial cells, while in infants, telomere lengths were similar across cell types.
  • Findings indicate that neuron telomeres remain stable with age, but glial cell telomeres shorten, particularly in white matter, hinting at different aging processes in brain cells.
View Article and Find Full Text PDF

In order to investigate the population dynamics of telomere status, we measured the telomere lengths of glandular cells in the adenohypophysis (AH) and pituicytes, a type of glial cell, in the neurohypophysis (NH) of 128 autopsied humans (65 men, 63 women, 0 and 102 years) using our original quantitative fluorescence in situ hybridization (Q-FISH) method. Telomeres in the AH shortened with aging in both men and women, but those of pituicytes did not. Pituicyte telomeres were significantly longer in women than in men.

View Article and Find Full Text PDF

Background: Congenital biliary dilatation (CBD) is a congenital malformation involving both dilatation of the extrahepatic bile duct and pancreaticobiliary maljunction. Persistent reflux of pancreatic juice injures the biliary tract mucosa, resulting in chronic inflammation and higher rates of carcinogenesis in the biliary tract, including the gallbladder. Telomeres are repetitive DNA sequences located at the ends of chromosomes.

View Article and Find Full Text PDF

We have reported telomere attrition in β and α cells of the pancreas in elderly patients with type 2 diabetes, but it has not been explored how the telomere lengths of these islet cells change according to age in normal subjects. To examine the telomere lengths of β and α cells in individuals without diabetes across a wide range of ages, we conducted measurement of the telomere lengths of human pancreatic β and α cells obtained from 104 autopsied subjects without diabetes ranging in age from 0 to 100 years. As an index of telomere lengths, the normalized telomere-centromere ratio (NTCR) was determined for β (NTCRβ) and α (NTCRα) cells by quantitative fluorescence in situ hybridization (Q-FISH).

View Article and Find Full Text PDF

Accumulated data have shown that most human somatic cells or tissues show irreversible telomere shortening with age, and that there are strong associations between telomere attrition and aging-related diseases, including cancers, diabetes and cognitive disorders. Although it has been largely accepted that telomere attrition is one of the major causes of aging-related disorders, critical aspects of telomere biology remain unresolved, especially the lack of standardized methodology for quantification of telomere length. Another frustrating issue is that no potentially promising methods for safe prevention of telomere erosion, or for telomere elongation, have been devised.

View Article and Find Full Text PDF

Telomere shortening occurs when cells divide, both in vitro and in vivo. On the other hand, telomerase is able to maintain telomere length in cells by adding TTAGGG repeats to the ends of telomeres. However, the interrelationships existing among telomere length, telomerase activity and growth in vertebrates remain to be clarified.

View Article and Find Full Text PDF

A large body of evidence supports a key role for telomere dysfunction in carcinogenesis due to the induction of chromosomal instability. To study telomere shortening in precancerous pancreatic lesions, we measured telomere lengths using quantitative fluorescence in situ hybridization in the normal pancreatic duct epithelium, pancreatic intraepithelial neoplasias (PanINs), and cancers. The materials employed included surgically resected pancreatic specimens without cancer (n = 33) and with invasive ductal carcinoma (n = 36), as well as control autopsy cases (n = 150).

View Article and Find Full Text PDF

We have reported that telomere fluorescence units (TFUs) of established induced pluripotent stem cells (iPSCs) derived from human amnion (hAM933) and fetal lung fibroblasts (MRC-5) were significantly longer than those of the parental cells, and that the telomere extension rates varied quite significantly among clones without chromosomal instability, although the telomeres of other iPSCs derived from MRC-5 became shorter as the number of passages increased along with chromosomal abnormalities from an early stage. In the present study we attempted to clarify telomere dynamics in each individual chromosomal arm of parental cells and their derived clonal human iPSCs at different numbers of passages using quantitative fluorescence in situ hybridization (Q-FISH). Although no specific arm of any particular chromosome appeared to be consistently shorter or longer than most of the other chromosomes in any of the cell strains, telomere elongation in each chromosome of an iPSC appeared to be random and stochastic.

View Article and Find Full Text PDF

Context: Although accelerated β-cell telomere shortening may be associated with diabetes that shows a dramatically increased incidence with aging, β-cell telomere length in diabetes has never been explored.

Objective: The objective of the present study was to examine telomere length in the β-cells of patients with diabetes.

Design And Patients: We determined telomere length in β- and α-cells of pancreases obtained at autopsy from 47 patients with type 2 diabetes and 51 controls, all older than 60 years.

View Article and Find Full Text PDF

Along with the increasing need for living-donor liver transplantation (LDLT), the issue of organ shortage has become a serious problem. Therefore, the use of organs from elderly donors has been increasing. While the short-term results of LDLT have greatly improved, problems affecting the long-term outcome of transplant patients remain unsolved.

View Article and Find Full Text PDF

Chromosomal and genomic instability due to telomere dysfunction is known to play an important role in carcinogenesis. To study telomere shortening in the epidermis surrounding actinic keratosis, we measured telomere lengths of basal, parabasal, and suprabasal cells in epidermis with actinic keratosis (actinic keratosis group, n = 18) and without actinic keratosis (sun-protected, n = 15, and sun-exposed, n = 13 groups) and in actinic keratosis itself as well as in dermal fibroblasts in the 3 groups, using quantitative fluorescence in situ hybridization. Among the 3 cell types, telomeres of basal cells were not always the longest, suggesting that tissue stem cells are not necessarily located among basal cells.

View Article and Find Full Text PDF

We attempted to clarify myocardial telomere dynamics using samples from 530 autopsied patients using Southern blot analysis. Overall regression analysis demonstrated yearly telomere reduction rate of 20 base pairs in the myocardium. There was a significant correlation between myocardial telomere and aging.

View Article and Find Full Text PDF

Here we attempted to clarify telomere metabolism in parental cells and their derived clonal human induced pluripotent stem cells (iPSCs) at different passages using quantitative fluorescence in situ hybridization (Q-FISH). Our methodology involved estimation of the individual telomere lengths of chromosomal arms in individual cells within each clone in relation to telomere fluorescence units (TFUs) determined by Q-FISH. TFUs were very variable within the same metaphase spread and within the same cell.

View Article and Find Full Text PDF

Purpose: Evaluation of the relationships existing among 3 histologic types of urothelial tumors, chromosomal instability, and telomere length.

Patients And Methods: We examined 37 consecutive cases of papillary urothelial neoplasm, from which 26 (70.3%) were suitable for karyotype analysis, comprising 7 papillary urothelial neoplasms of low malignant potential (PUNLMPs), 10 low-grade papillary urothelial carcinomas (PUCs), and 9 high-grade PUCs.

View Article and Find Full Text PDF

Many data pertaining to the accelerated telomere loss in cultured cells derived from Werner syndrome (WS), a representative premature aging syndrome, have been accumulated. However, there have been no definitive data on in vivo telomere shortening in WS patients. In the present study, we measured terminal restriction fragment (TRF) lengths of 10 skin samples collected from extremities of 8 WS patients aged between 30 and 61 years that had been surgically amputated because of skin ulceration, and estimated the annual telomere loss.

View Article and Find Full Text PDF

We reviewed our methodology and results of telomere measurements, with reference to telomere length and aging. Human tissues always showed telomere shortening with age, except for the brain and myocardium. Yearly rates of telomere length reduction in various tissues were mostly within the range 20-60 bp, and thus compatible with that expected from only one round of mitosis.

View Article and Find Full Text PDF

Objective: Telomere shortening is thought to be associated with genetic instability. The purpose of this study was to measure telomere length in a series of Barrett's adenocarcinomas (BAs), focusing on the telomere/centromere fluorescent intensity ratio (TCR) with tissue quantitative fluorescent in situ hybridization (Q-FISH).

Material And Methods: A total of 11 cases of BA were evaluated for upper esophagus (UE), lower esophagus (LE), Barrett's mucosa (BM), BA, and gastric cardiac mucosa (GC).

View Article and Find Full Text PDF

Critically shortened, dysfunctional telomeres may play a role in the genetic instabilities commonly found in cancer. We analyzed 30 surgical specimens of invasive breast carcinoma from women aged 34 to 91 years and estimated telomere lengths as telomere-to-centromere ratio values in the 5 different cell types comprising breast tissue in order to clarify telomere length variations within and between individuals using our tissue quantitative fluorescence in situ hybridization method. We obtained 3 novel findings.

View Article and Find Full Text PDF

Previous studies of telomeres and telomerase have focused mostly on mammals, and data for other vertebrates are limited. We analyzed both telomere length (terminal restriction fragment length) and telomerase activity in a small freshwater teleost fish, the medaka (Oryzias latipes), and found that the telomeres shorten during ageing despite the fact that a considerable amount of telomerase activity is ubiquitously detectable throughout the life of the fish. Since the telomere attrition rate during development was greater than that in adulthood, telomere length is inversely correlated with the increase in body length.

View Article and Find Full Text PDF

We investigated the telomere lengths of individual cell types in lingual mucosa using an improved tissue quantitative fluorescence in situ hybridization (Q-FISH) method. Our tissue Q-FISH method compensates for partially cut nuclei in a tissue section by using the telomere:centromere ratio (TCR). We normalized our TCR measurements (NTCR) using a section from a block of cultured cells placed on the same slide, thus improving the accuracy and reproducibility of the results.

View Article and Find Full Text PDF

Many studies have demonstrated the association between telomere length in mitotic cells and carcinogenesis and mortality, but little attention has been focused on post-mitotic cells and human life expectancy. We assessed the relationship between telomere length in cerebral gray and white matter and longevity in 72 autopsied Japanese patients aged 0-100 years using Southern blot hybridization. The mean telomere lengths in the gray and white matter were 12.

View Article and Find Full Text PDF

We developed a novel method for evaluating telomere length in 6 cell types of noncancerous and cancerous mucosal tissues from 11 cases of gastric neoplasm using the quantitative fluorescence in situ hybridization method with telomere and centromere peptide nucleic acid probes. Our telomere length estimates were determined from the background-corrected telomere intensity divided by the background-corrected centromere intensity (telomere-to-centromere ratio). Our results indicated that telomere lengths in each of the cases studied were reduced in turn from fibroblasts to fundic gland cells, to glandular neck cells, and then to surface foveolar cells.

View Article and Find Full Text PDF

Fukuyama-type congenital muscular dystrophy (FCMD) is characterized by muscular dystrophy and cortical dysgenesis of the cerebrum and cerebellum. We investigated the extent and nature of tauopathy in the brains of 7 postfetal (14-34 years of age) and 2 fetal (18- and 20-week gestational age) FCMD cases. In all postfetal cases, tauopathy was found in the areas of cortical dysgenesis in the cerebrum, in addition to predictable sites such as the hippocampus.

View Article and Find Full Text PDF