Tissue damage elicits cell fate switching through a process called metaplasia, but how the starting cell fate is silenced and the new cell fate is activated has not been investigated in animals. In cell culture, pioneer transcription factors mediate "reprogramming" by opening new chromatin sites for expression that can attract transcription factors from the starting cell's enhancers. Here we report that SOX4 is sufficient to initiate hepatobiliary metaplasia in the adult mouse liver, closely mimicking metaplasia initiated by toxic damage to the liver.
View Article and Find Full Text PDFTissue damage elicits cell fate switching through a process called metaplasia, but how the starting cell fate is silenced and the new cell fate is activated has not been investigated in animals. In cell culture, pioneer transcription factors mediate "reprogramming" by opening new chromatin sites for expression that can attract transcription factors from the starting cell's enhancers. Here we report that Sox4 is sufficient to initiate hepatobiliary metaplasia in the adult liver.
View Article and Find Full Text PDFTo determine how different pioneer transcription factors form a targeted, accessible nucleosome within compacted chromatin and collaborate with an ATP-dependent chromatin remodeler, we generated nucleosome arrays in vitro with a central nucleosome containing binding sites for the hematopoietic E-Twenty Six (ETS) factor PU.1 and Basic Leucine Zipper (bZIP) factors C/EBPα and C/EBPβ. Our long-read sequencing reveals that each factor can expose a targeted nucleosome on linker histone-compacted arrays, but with different nuclease sensitivity patterns.
View Article and Find Full Text PDFThe demand for artificial blood vessels to treat vascular disease will continue to increase in the future. To expand the application of blood-compatible poly(2-methoxyethyl acrylate) (pMEA) to artificial blood vessels, control of the mechanical properties of pMEA is established using supramolecular cross-links based on inclusion complexation of acetylated cyclodextrin. The mechanical properties, such as Young's modulus and toughness, of these pMEA-based elastomers change with the amount of cross-links, maintaining tissue-like behavior (J-shaped stress-strain curve).
View Article and Find Full Text PDFPatients newly diagnosed with metastatic pancreatic ductal adenocarcinoma generally have poor survival, with heterogeneous rates of progression. Biomarkers that could predict progression and/or survival would help inform patients and providers as they make care decisions. In a previous retrospective study, we discovered that circulating thrombospondin-2 (THBS2) could, in combination with CA19-9, better distinguish patients with PDAC versus healthy controls.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) is often diagnosed too late for effective therapy. The classic strategy for early detection biomarker advancement consists of initial retrospective phases of discovery and validation with tissue samples taken from individuals diagnosed with disease, compared with controls. Using this approach, we previously reported the discovery of a blood biomarker panel consisting of thrombospondin-2 (THBS2) and CA19-9 that together could discriminate resectable stage I and IIa PDAC as well as stages III and IV PDAC, with c-statistic values in the range of 0.
View Article and Find Full Text PDFGene network transitions in embryos and other fate-changing contexts involve combinations of transcription factors. A subset of fate-changing transcription factors act as pioneers; they scan and target nucleosomal DNA and initiate cooperative events that can open the local chromatin. However, a gap has remained in understanding how molecular interactions with the nucleosome contribute to the chromatin-opening phenomenon.
View Article and Find Full Text PDFThe transforming growth factor β (TGF-β) and bone morphogenetic protein (BMP) pathways transduce extracellular signals into tissue-specific transcriptional responses. During this process, signaling effector Smad proteins translocate into the nucleus to direct changes in transcription, but how and where they localize to DNA remain important questions. We have mapped Drosophila TGF-β signaling factors Mad, dSmad2, Medea, and Schnurri genome-wide in Kc cells and find that numerous sites for these factors overlap with the architectural protein CTCF.
View Article and Find Full Text PDFBackground: Chromosome conformation capture studies suggest that eukaryotic genomes are organized into structures called topologically associating domains. The borders of these domains are highly enriched for architectural proteins with characterized roles in insulator function. However, a majority of architectural protein binding sites localize within topological domains, suggesting sites associated with domain borders represent a functionally different subclass of these regulatory elements.
View Article and Find Full Text PDFBrd4 is a double bromodomain protein that has been shown to interact with acetylated histones to regulate transcription by recruiting Positive Transcription Elongation Factor b to the promoter region. Brd4 is also involved in gene bookmarking during mitosis and is a therapeutic target for the treatment of acute myeloid leukemia. The Drosophila melanogaster Brd4 homologue is called Fs(1)h and, like its vertebrate counterpart, encodes different isoforms.
View Article and Find Full Text PDFBackground: Strains from a collection of Drosophila GFP protein trap lines express GFP in the normal tissues where the endogenous protein is present. This collection can be used to screen for proteins distributed in the nucleus in a non-uniform pattern.
Methodology/principal Findings: We analyzed four lines that show peripheral or punctate nuclear staining.
Several multiprotein DNA complexes capable of insulator activity have been identified in Drosophila melanogaster, yet only CTCF, a highly conserved zinc finger protein, and the transcription factor TFIIIC have been shown to function in mammals. CTCF is involved in diverse nuclear activities, and recent studies suggest that the proteins with which it associates and the DNA sequences that it targets may underlie these various roles. Here we show that the Drosophila homolog of CTCF (dCTCF) aligns in the genome with other Drosophila insulator proteins such as Suppressor of Hairy wing [SU(HW)] and Boundary Element Associated Factor of 32 kDa (BEAF-32) at the borders of H3K27me3 domains, which are also enriched for associated insulator proteins and additional cofactors.
View Article and Find Full Text PDFTranscription regulation is mediated by enhancers that bind sequence-specific transcription factors, which in turn interact with the promoters of the genes they control. Here, we show that the JIL-1 kinase is present at both enhancers and promoters of ecdysone-induced Drosophila genes, where it phosphorylates the Ser10 and Ser28 residues of histone H3. JIL-1 is also required for CREB binding protein (CBP)-mediated acetylation of Lys27, a well-characterized mark of active enhancers.
View Article and Find Full Text PDFInsulators are multiprotein-DNA complexes thought to affect gene expression by mediating inter- and intrachromosomal interactions. Drosophila insulators contain specific DNA-binding proteins plus common components, such as CP190, that facilitate these interactions. Here, we examine changes in the distribution of Drosophila insulator proteins during the heat-shock and ecdysone responses.
View Article and Find Full Text PDFPost-translational modifications of histone proteins modulate the binding of transcription regulators to chromatin. Studies in Drosophila have shown that the phosphorylation of histone H3 at Ser10 (H3S10ph) by JIL-1 is required specifically during early transcription elongation. 14-3-3 proteins bind H3 only when phosphorylated, providing mechanistic insights into the role of H3S10ph in transcription.
View Article and Find Full Text PDFAt present, molecular bases of spectral tuning in rhodopsin-like (RH2) pigments are not well understood. Here, we have constructed the RH2 pigments of nocturnal Tokay gecko (Gekko gekko) and diurnal American chameleon (Anolis carolinensis) as well as chimeras between them. The RH2 pigments of the gecko and chameleon reconstituted with 11-cis-retinal had the wavelengths of maximal absorption (lambda(max)'s) of 467 and 496 nm, respectively.
View Article and Find Full Text PDFThe molecular bases of spectral tuning in the UV-, violet-, and blue-sensitive pigments are not well understood. Using the in vitro assay, here we show that the SWS1, SWS2-A, and SWS2-B pigments of bluefin killifish (Lucania goodei) have the wavelengths of maximal absorption (lambda(max)'s) of 354, 448, and 397 nm, respectively. The spectral difference between the SWS2-A and SWS2-B pigments is largest among those of all currently known pairs of SWS2 pigments within a species.
View Article and Find Full Text PDFWe previously discovered Y-chromosomal red-green opsin genes in two types of owl monkeys with different chromosomal characteristics. In one type, the Y-linked opsin gene is a single-copy intact gene and in the other, the genes exist as multiple pseudogenes on a Y/autosome fusion chromosome. In the present study, we first distinguished the two types of monkeys as distinct allopatric species on the basis of karyotypic characteristics: Aotus lemurinus griseimembra (Karyotype III, diploid chromosome number [2n]=53) and Aotus azarae boliviensis (Karyotype VI; male 2n=49; female 2n=50), belonging to the northern and southern species groups, respectively, separated by the Amazon River system.
View Article and Find Full Text PDFBeing the largest land mammals, elephants have very few natural enemies and are active during both day and night. Compared with those of diurnal and nocturnal animals, the eyes of elephants and other arrhythmic species, such as many ungulates and large carnivores, must function in both the bright light of day and dim light of night. Despite their fundamental importance, the roles of photosensitive molecules, visual pigments, in arrhythmic vision are not well understood.
View Article and Find Full Text PDFRed-green color vision is strongly suspected to enhance the survival of its possessors. Despite being red-green color blind, however, many species have successfully competed in nature, which brings into question the evolutionary advantage of achieving red-green color vision. Here, we propose a new method of identifying positive selection at individual amino acid sites with the premise that if positive Darwinian selection has driven the evolution of the protein under consideration, then it should be found mostly at the branches in the phylogenetic tree where its function had changed.
View Article and Find Full Text PDFThe wavelengths of maximal absorption (lambdamax) of the rhodopsins of nine squirrelfishes (N. sammara, N. argenteus, S.
View Article and Find Full Text PDFThe X-chromosomal locality of the red-green-sensitive opsin genes has been the norm for all mammals and is essential for color vision of higher primates. Owl monkeys (Aotus), a genus of New World monkeys, are the only nocturnal higher primates and are severely color-blind. We demonstrate that the owl monkeys possess extra red-green opsin genes on the Y-chromosome.
View Article and Find Full Text PDF