Publications by authors named "Naomi Takei Masuda"

Onychomycosis is a prevalent disease in many areas of the world, affecting approximately 5.5% of the global population. Among several subtypes of onychomycosis, distal-lateral-subungual onychomycosis is the most common, and topical onychomycosis agents effective against this pathogenesis require properties such as high nail penetration and low affinity for keratin, the main component of the nail.

View Article and Find Full Text PDF

Onychomycosis, a superficial fungal infection of the nails, is prevalent in many areas of the world. Topical agents for onychomycosis need to reach the subungual layer and nail bed to exert antifungal activity in the presence of keratin, the major component of the nail. It is difficult to evaluate the efficacy and pharmacodynamics of topical agents for onychomycosis in a non-clinical evaluation system.

View Article and Find Full Text PDF

ME1111 is a novel antifungal agent currently under clinical development as a topical onychomycosis treatment. A major challenge in the application of topical onychomycotics is penetration and dissemination of antifungal agent into the infected nail plate and bed. In this study, pharmacokinetic/pharmacodynamic parameters of ME1111 that potentially correlate with clinical efficacy were compared with those of marketed topical onychomycosis antifungal agents: efinaconazole, tavaborole, ciclopirox, and amorolfine.

View Article and Find Full Text PDF

Fungal nail infection (onychomycosis) is a prevalent disease in many areas of the world, with a high incidence approaching 23%. Available antifungals to treat the disease suffer from a number of disadvantages, necessitating the discovery of new efficacious and safe antifungals. Here, we evaluate the in vitro antifungal activity and nail penetration ability of ME1111, a novel antifungal agent, along with comparator drugs, including ciclopirox, amorolfine, terbinafine, and itraconazole.

View Article and Find Full Text PDF

Despite the existing treatment options for onychomycosis, there remains a strong demand for potent topical medications. ME1111 is a novel antifungal agent that is active against dermatophytes, has an excellent ability to penetrate human nails, and is being developed as a topical agent for onychomycosis. In the present study, we investigated its mechanism of action.

View Article and Find Full Text PDF

We have isolated PF1092A, B, and C, novel nonsteroidal progesterone ligands with preferential affinity for the progesterone receptor, from fermentation broth of a fungus [Tabata Y, Miike N, Hatsu M, Kurata Y, Yaguchi T, Someya A, Miyadoh S, Hoshiko S, Tsuruoka T, and Omoto S (1997) J Antibiot 50:304-308; Tabata Y, Hatsu M, Kurata Y, Miyajima K, Tani M, Sasaki T, Kodama Y, Tsuruoka T, and Omoto S (1997) J Antibiot 50:309-313]. The original skeleton of PF1092, tetrahydronaphthofuranone, was modified synthetically to produce a new skeleton, tetrahydrobenzindrone, and in the present study, biological activities of two derivatives, CP8816 [(4aR,5R,6R,7R)-6-(N,N-dimethylaminocarbonyl)oxy-7-methoxy-4a,5,6,7-tetrahydro-1,3,4a,5-tetramethylbenz[f]indol-2(4H)-one] and CP8863 [(4aR,5R,6R,7R)-7-hydroxy-6-(N-methylcarbamoyl)oxy-4a,5,6,7-tetrahydro-1,3,4a,5-tetramethylbenz[f]indol-2(4H)-one], were investigated. Both CP8816 and CP8863 demonstrated selective binding to progesterone receptor and partial agonistic activity in a progesterone-dependent endogenous alkaline phosphatase expression assay.

View Article and Find Full Text PDF

We studied the pharmacological effects of novel nonsteroidal progesterone receptor antagonists CP8661 and CP8754, which were synthesized from the fungal metabolite PF1092C. CP8661 possess a tetrahydrobenzindolone skeleton and CP8754 possess a tetrahydronaphthofuranone skeleton. In binding assays for steroid receptors, CP8661 and CP8754 inhibited [(3)H]-progesterone binding to human progesterone receptors (hPR), though they are less potent than RU486.

View Article and Find Full Text PDF