Background: Traumatic brain injury (TBI) initiates interrelated inflammatory and coagulation cascades characterized by wide-spread cellular activation, induction of leukocyte and endothelial cell adhesion molecules and release of soluble pro/antiinflammatory cytokines and thrombotic mediators. Resuscitative care is focused on optimizing cerebral perfusion and reducing secondary injury processes. Hypertonic saline is an effective osmotherapeutic agent for the treatment of intracranial hypertension and has immunomodulatory properties that may confer neuroprotection.
View Article and Find Full Text PDFIn the treatment of severe traumatic brain injury (TBI), the choice of fluid and osmotherapy is important. There are practical and theoretical advantages to the use of hypertonic saline. S100B, neuron-specific enolase (NSE), and myelin-basic protein (MBP) are commonly assessed biomarkers of brain injury with potential utility as diagnostic and prognostic indicators of outcome after TBI, but they have not previously been studied in the context of fluid resuscitation.
View Article and Find Full Text PDF