Publications by authors named "Naomi Paxton"

Fluorescent probes are an indispensable tool in the realm of bioimaging technologies, providing valuable insights into the assessment of biomaterial integrity and structural properties. However, incorporating fluorophores into scaffolds made from melt electrowriting (MEW) poses a challenge due to the sustained, elevated temperatures that this processing technique requires. In this context, [n]cycloparaphenylenes ([n]CPPs) serve as excellent fluorophores for MEW processing with the additional benefit of customizable emissions profiles with the same excitation wavelength.

View Article and Find Full Text PDF

This study demonstrates how either a heated flat or cylindrical collector enables defect-free melt electrowriting (MEW) of complex geometries from high melting temperature polymers. The open-source "MEWron" printer uses nylon-12 filament and combined with a heated flat or cylindrical collector, produces well-defined fibers with diameters ranging from 33 ± 4 to 95 ± 3 µm. Processing parameters for stable jet formation and minimal defects based on COMSOL thermal modeling for hardware design are optimized.

View Article and Find Full Text PDF

Preoperative planning of comminuted fracture repair using 3D printed anatomical models is enabling surgeons to visualize and simulate the fracture reduction processes before surgery. However, the preparation of such models can be challenging due to the complexity of certain fractures, particularly in preserving fine detail in bone fragments, maintaining the positioning of displaced fragments, and accurate positioning of multiple bones. This study described several key technical considerations for preparing 3D printed anatomical models for comminuted fracture preoperative planning.

View Article and Find Full Text PDF

3D printing technology has become increasingly popular in healthcare settings, with applications of 3D printed anatomical models ranging from diagnostics and surgical planning to patient education. However, as the use of 3D printed anatomical models becomes more widespread, there is a growing need for regulation and quality control to ensure their accuracy and safety. This literature review examines the current state of 3D printing in hospitals and FDA regulation process for software intended for use in producing 3D printed models and provides for the first time a comprehensive list of approved software platforms alongside the 3D printers that have been validated with each for producing 3D printed anatomical models.

View Article and Find Full Text PDF

The adoption of additive manufacturing (AM) techniques into the medical space has revolutionised tissue engineering. Depending upon the tissue type, specific AM approaches are capable of closely matching the physical and biological tissue attributes, to guide tissue regeneration. For hard tissue such as bone, powder bed fusion (PBF) techniques have significant potential, as they are capable of fabricating materials that can match the mechanical requirements necessary to maintain bone functionality and support regeneration.

View Article and Find Full Text PDF

Melt electrowriting (MEW) has been widely used to process polycaprolactone (PCL) into highly ordered microfiber scaffolds with controllable architecture and geometry. However, the integrity of PCL during specific processes involved in routine MEW scaffold development has not yet been thoroughly investigated. This study investigates the impact of MEW processing on PCL following exposure to high temperatures required for melt extrusion as well as atmospheric plasma, a widely used surface treatment for improving MEW scaffold hydrophilicity.

View Article and Find Full Text PDF

Prostheses play a critical role in healthcare provision for many patients and encompass aesthetic facial prostheses, prosthetic limbs and prosthetic joints, bones, and other implantable medical devices in musculoskeletal surgery. An increasingly important component in cutting-edge healthcare treatments is the ability to accurately capture patient anatomy in order to guide the manufacture of personalized prostheses. This article examines methods for capturing patient anatomy and discusses the degrees of personalization in medical manufacturing alongside a summary of current trends in scanning technology with a focus on identifying workflows for incorporating personalization into patient-specific products.

View Article and Find Full Text PDF

Resin histology plays an essential role in the analysis of hard tissues, such as bone and teeth, as well as in the context of metallic implant analysis. However, the techniques of resin embedding, followed by ground sectioning, are very costly due to significantly increased reagent cost and labour time when compared to the conventional paraffin histology approach. In the present study, a novel resin array system was developed to increase the affordability of a project analysing rat femur tissues containing metallic or polymeric implants.

View Article and Find Full Text PDF

Three-dimensional (3D) printing technologies are widely applied in various industries and research fields and are currently the subject of intensive investigation and development. However, high-performance materials that are suitable for 3D printing are still in short supply, which is a major limitation for 3D printing, particularly for biomedical applications. The physicochemical properties of single constituent materials may not be sufficient to meet the needs of modern biotechnology development and production.

View Article and Find Full Text PDF

Melt electrowriting (MEW) has grown in popularity in biofabrication research due to its ability to fabricate complex, high-precision networks of fibres. These fibres can mimic the morphology of a natural extracellular matrix, enabling tissue analogues for transplantation or personalised drug screening. To date, MEW has employed two different collector-plate modalities for the fabrication of constructs.

View Article and Find Full Text PDF

Additive manufacturing via melt electrowriting (MEW) can create ordered microfiber scaffolds relevant for bone tissue engineering; however, there remain limitations in the adoption of new printing materials, especially in MEW of biomaterials. For example, while promising composite formulations of polycaprolactone with strontium-substituted bioactive glass have been processed into large or disordered fibres, from what is known, biologically-relevant concentrations (>10 wt%) have never been printed into ordered microfibers using MEW. In this study, rheological characterization is used in combination with a predictive mathematical model to optimize biomaterial formulations and MEW conditions required to extrude various PCL and PCL/SrBG biomaterials to create ordered scaffolds.

View Article and Find Full Text PDF

The development and formulation of printable inks for extrusion-based 3D bioprinting has been a major challenge in the field of biofabrication. Inks, often polymer solutions with the addition of crosslinking to form hydrogels, must not only display adequate mechanical properties for the chosen application but also show high biocompatibility as well as printability. Here we describe a reproducible two-step method for the assessment of the printability of inks for bioprinting, focussing firstly on screening ink formulations to assess fibre formation and the ability to form 3D constructs before presenting a method for the rheological evaluation of inks to characterise the yield point, shear thinning and recovery behaviour.

View Article and Find Full Text PDF

This study investigates the use of allyl-functionalized poly(glycidol)s (P(AGE-co-G)) as a cytocompatible cross-linker for thiol-functionalized hyaluronic acid (HA-SH) and the optimization of this hybrid hydrogel as bioink for 3D bioprinting. The chemical cross-linking of gels with 10 wt.% overall polymer concentration was achieved by a UV-induced radical thiol-ene coupling between the thiol and allyl groups.

View Article and Find Full Text PDF