Background: Intestinal microbiota are known to play an important role in the establishment of oral tolerance, thereby protecting the organism from food allergies. Dietary intake of nucleic acid (NA) is also reported to have such an anti-allergic effect; however, one unsolved question is whether or not dietary NA would act through a process of toll-like receptor 9 signaling activated by DNA containing a CpG motif, a well-known sequence leading to immunostimulatory activity. In this study, we focused on the question of whether the addition of dietary NA lacking CpG motifs would allow continued modulation of the Th1/Th2 balance.
View Article and Find Full Text PDFIndigenous microbiota have several beneficial effects on host physiological functions; however, little is known about whether or not postnatal microbial colonization can affect the development of brain plasticity and a subsequent physiological system response. To test the idea that such microbes may affect the development of neural systems that govern the endocrine response to stress, we investigated hypothalamic-pituitary-adrenal (HPA) reaction to stress by comparing germfree (GF), specific pathogen free (SPF) and gnotobiotic mice. Plasma ACTH and corticosterone elevation in response to restraint stress was substantially higher in GF mice than in SPF mice, but not in response to stimulation with ether.
View Article and Find Full Text PDF