Atherogenic cardiovascular diseases are the major cause of mortality. Prevention and prediction of incidents is important; however, biomarkers that directly reflect the disease progression remain poorly investigated. To elucidate molecular determinants of atherogenesis, proteomic approaches are advantageous by using model animals for comparing changes occurring systematically (bloodstream) and locally (lesion) in accordance with the disease progression stages.
View Article and Find Full Text PDFRationale: Electron capture dissociation (ECD) is useful tool for sequencing of peptides and proteins with post-translational modifications. To increase the sequence coverage for peptides and proteins, it is important to develop ECD device with high fragmentation efficiency.
Methods: Sequence analysis of intact undigested bioactive peptides (3000-5000 Da) was performed by use of electron capture dissociation (rf-ECD) and collision-induced dissociation (CID) in a linear radio-frequency quadrupole ion trap that was coupled to a time-of-flight mass spectrometer.
We developed a liquid chromatography (LC) compatible electron capture dissociation (ECD) mass spectrometer for glycoproteomics, with which ECD and hot ECD (HECD) experiments can be flexibly switched by quickly changing the electron energy without further tuning of the mass spectrometer. Desialylated glycopeptides were dissociated well in both ECD and HECD experiments. For sialylated glycopeptides, on the other hand, ECD with electron energy higher than 4 eV showed significantly higher sequence coverage than that with an electron energy of 0.
View Article and Find Full Text PDFA mass-spectrometric method for a de novo determination of O-glycosylation heterogeneity was developed. We used a mild fragmentation technique, electron capture dissociation (ECD), which enables the determination of glycosylation sites as well as peptide sequencing. To demonstrate the correct identification of glycopeptides, we prepared a series of glycopeptides with the same peptide sequence and 6 different glycan modifications.
View Article and Find Full Text PDFDespite the growing importance of mucin core O-glycosylation in many biological processes including the protection of epithelial cell surfaces, the immune response, cell adhesion, inflammation, and tumorigenesis/metastasis, the regulation mechanism and conformational significance of the multiple introduction of α-GalNAc residues by UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases (ppGalNAcTs) remains unclear. Here we report an efficient approach by combining MS and NMR spectroscopy that allows for the identification of O-glycosylation site(s) and the effect of O-glycosylation on the peptide backbone structures during enzymatic mucin domain assembly by using an isoform UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase-T2 (ppGalNAcT2) in vitro. An electron-capture dissociation device in a linear radio-frequency quadrupole ion trap (RFQ-ECD) combined with a time-of-flight (TOF) mass spectrometer was employed for the identification of Thr/Ser residues occupied by α-GalNAc branching among multiple and potential O-glycosylation sites in the tandem repeats of human mucin glycoproteins MUC4 (Thr-Ser-Ser-Ala-Ser-Thr-Gly-His-Ala-Thr-Pro-Leu-Pro-Val-Thr-Asp) and MUC5AC (Pro-Thr-Thr-Val-Gly-Ser-Thr-Thr-Val-Gly).
View Article and Find Full Text PDFUDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltransferases (ppGalNAcTs, EC 2.4.1.
View Article and Find Full Text PDFA detection technique for ion suppression in liquid chromatography/mass spectrometry (LC/MS) was developed by adding a probe to an LC mobile phase at a certain concentration. The probe is so hydrophilic that it is not adsorbed in a reversed-phase nanoflow LC column, and, furthermore, has an isoelectric point of about 3, which is lower than that for most peptides and is close to the pH of the mobile phase. The intensity of the protonated probe molecule decreases much more than that of other peptides when ion suppression occurs.
View Article and Find Full Text PDF