Publications by authors named "Naomi J Halas"

Catalysis stands as an indispensable cornerstone of modern society, underpinning the production of over 80% of manufactured goods and driving over 90% of industrial chemical processes. As the demand for more efficient and sustainable processes grows, better catalysts are needed. Understanding the working principles of catalysts is key, and over the last 50 years, surface-enhanced Raman Spectroscopy (SERS) has become essential.

View Article and Find Full Text PDF

Purpose: Focal therapy aims to provide a durable oncologic treatment option for men with prostate cancer (PCa), while preserving their quality of life. Most focal therapy modalities rely on the direct tissue effect, resulting in a possible nontargeted approach to ablation. Here, we report the results of the first human feasibility trial utilizing nanoparticle-directed focal photothermal ablation for PCa.

View Article and Find Full Text PDF

AuroLase Therapy-a nanoparticle-enabled focal therapy-has the potential to safely and effectively treat localized prostate cancer (PCa), preserving baseline functionality. This article presents a detailed case of localized PCa treated with AuroLase, providing insight on expectations from the diagnosis of PCa to one year post-treatment. AuroLase Therapy is a two-day treatment consisting of a systemic infusion of gold nanoshells (~150-nm hydrodynamic diameter) on Day 1, and sub-ablative laser treatment on Day 2.

View Article and Find Full Text PDF

Aluminum nanocrystals created by catalyst-driven colloidal synthesis support excellent plasmonic properties, due to their high level of elemental purity, monocrystallinity, and controlled size and shape. Reduction in the rate of nanocrystal growth enables the synthesis of highly anisotropic Al nanowires, nanobars, and singly twinned "nanomoustaches". Electron energy loss spectroscopy was used to study the plasmonic properties of these nanocrystals, spanning the broad energy range needed to map their plasmonic modes.

View Article and Find Full Text PDF

Aluminum nanocrystals (AlNCs) are of increasing interest as sustainable, earth-abundant nanoparticles for visible wavelength plasmonics and as versatile nanoantennas for energy-efficient plasmonic photocatalysis. Here, we show that annealing AlNCs under various gases and thermal conditions induces substantial, systematic changes in their surface oxide, modifying crystalline phase, surface morphology, density, and defect type and concentration. Tailoring the surface oxide properties enables AlNCs to function as all-aluminum-based antenna-reactor plasmonic photocatalysts, with the modified surface oxides providing varying reactivities and selectivities for several chemical reactions.

View Article and Find Full Text PDF

Solar cells play an increasing role in global electricity production, and it is critical to maximize their conversion efficiency to ensure the highest possible production. The number of photons entering the absorbing layer of the solar cell plays an important role in achieving a high conversion efficiency. Metal nanoparticles supporting localized surface plasmon resonances (LSPRs) have for years been suggested for increasing light in-coupling for solar cell applications.

View Article and Find Full Text PDF
Article Synopsis
  • Strong metal-support interactions (SMSIs) can cause platinum (Pt) to be encapsulated by oxide supports, typically observed in reducible oxides like TiO and NbO.
  • This study demonstrates that amorphous native surface oxide of aluminum nanocrystals (AlNCs) can also exhibit SMSI-induced Pt encapsulation when subjected to hydrogen reduction at 300 °C, leading to isolated Pt single-atom sites being exposed for catalysis.
  • The findings suggest that the native oxide on AlNCs allows for a well-defined environment for Pt atoms and promote further research into SMSIs with various materials, potentially leading to enhanced photocatalytic applications due to their unique plasmonic properties.
View Article and Find Full Text PDF

Metasurfaces are a class of two-dimensional artificial resonators, creating new opportunities for strong light-matter interactions. One type of nonradiative optical metasurface that enables substantial light concentration is based on quasi-Bound States in the Continuum (quasi-BIC). Here we report the design and fabrication of a quasi-BIC dielectric metasurface that serves as an optical frequency antenna for photocatalysis.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) constitute a class of universally prevalent carcinogenic environmental contaminants. It is increasingly recognized, however, that PAHs derivatized with oxygen, sulfur, or nitrogen functional groups are frequently more dangerous than their unfunctionalized counterparts. This much larger family of chemicals─polycyclic aromatic compounds─PACs─is far less well characterized than PAHs.

View Article and Find Full Text PDF

Since its discovery, surface-enhanced Raman spectroscopy (SERS) has shown outstanding promise of identifying trace amounts of unknown molecules in rapid, portable formats. However, the many different types of nanoparticles or nanostructured metallic SERS substrates created over the past few decades show substantial variability in the SERS spectra they provide. These inconsistencies have even raised speculation that substrate-specific SERS spectral libraries must be compiled for practical use of this type of spectroscopy.

View Article and Find Full Text PDF

Nanoparticle-assisted laser-induced photothermal therapy (PTT) is a promising method for cancer treatment; yet, visualization of nanoparticle uptake and photothermal response remain a critical challenge. Here, we report a magnetic resonance imaging-active nanomatryoshka (GdO-NM), a multilayered (Au core/GdO shell/Au shell) sub-100 nm nanoparticle capable of combining T MRI contrast with PTT. This bifunctional nanoparticle demonstrates an r of 1.

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy (SERS) holds exceptional promise as a streamlined chemical detection strategy for biological and environmental contaminants compared with current laboratory methods. Priority pollutants such as polycyclic aromatic hydrocarbons (PAHs), detectable in water and soil worldwide and known to induce multiple adverse health effects upon human exposure, are typically found in multicomponent mixtures. By combining the molecular fingerprinting capabilities of SERS with the signal separation and detection capabilities of machine learning (ML), we examine whether individual PAHs can be identified through an analysis of the SERS spectra of multicomponent PAH mixtures.

View Article and Find Full Text PDF

Aluminum nanocrystals (Al NCs) with a well-defined size and shape combine unique plasmonic properties with high earth abundance, potentially ideal for applications where sustainability and cost are important factors. It has recently been shown that single-crystal Al {100} nanocubes can be synthesized by the decomposition of AlH with Tebbe's reagent, a titanium(IV) catalyst with two cyclopentadienyl ligands. By systematically modifying the catalyst molecular structure, control of the NC growth morphology is observed spectroscopically, as the catalyst stabilizes the {100} NC facets.

View Article and Find Full Text PDF

Catalysts based on platinum group metals have been a major focus of the chemical industry for decades. We show that plasmonic photocatalysis can transform a thermally unreactive, earth-abundant transition metal into a catalytically active site under illumination. Fe active sites in a Cu-Fe antenna-reactor complex achieve efficiencies very similar to Ru for the photocatalytic decomposition of ammonia under ultrafast pulsed illumination.

View Article and Find Full Text PDF

Methods for generating solvated electrons─free electrons in solution─have focused primarily on alkali metal ionization or high-energy electrons or photons. Here we report the generation of solvated electrons by exciting the plasmon resonance of Al nanocrystals suspended in solution with visible light. Two chemical reactions were performed: a radical-addition reaction with the spin-trap 2-methyl-2-nitrosopropane, and a model cyclization reaction with the radical clock 6-bromohex-1-ene.

View Article and Find Full Text PDF

Plasmonic antenna-reactor photocatalysts have been shown to convert light efficiently to chemical energy. Virtually all chemical reactions mediated by such complexes to date, however, have involved relatively simple reactions that require only a single type of reaction site. Here, we investigate a planar Al nanodisk antenna with two chemically distinct and spatially separated active sites in the form of Pd and Fe nanodisks, fabricated in 90° and 180° trimer configurations.

View Article and Find Full Text PDF

Plasmonic nanostructures have attracted increasing interest in the fields of photochemistry and photocatalysis for their ability to enhance reactivity and tune reaction selectivity, a benefit of their strong interactions with light and their multiple energy decay mechanisms. Here we introduce the use of earth-abundant plasmonic aluminum nanoparticles as a promising renewable detoxifier of the sulfur mustard simulant 2-chloroethylethylsulfide through gas phase photodecomposition. Analysis of the decomposition products indicates that C-S bond breaking is facilitated under illumination, while C-Cl breaking and HCl elimination are favored under thermocatalytic (dark) conditions.

View Article and Find Full Text PDF

A promising clinical trial utilizing gold-silica core-shell nanostructures coated with polyethylene glycol (PEG) has been reported for near-infrared (NIR) photothermal therapy (PTT) of prostate cancer. The next critical step for PTT is the visualization of therapeutically relevant nanoshell (NS) concentrations at the tumor site. Here we report the synthesis of PEGylated GdO-mesoporous silica/gold core/shell NSs (GdO-MS NSs) with NIR photothermal properties that also supply sufficient MRI contrast to be visualized at therapeutic doses (≥10 NSs per milliliter).

View Article and Find Full Text PDF

The synthesis of Al nanocrystals (Al NCs) is a rapidly expanding field, but there are few strategies for size and morphology control. Here we introduce a dual catalyst approach for the synthesis of Al NCs to control both NC size and shape. By using one catalyst that nucleates growth more rapidly than a second catalyst whose ligands affect NC morphology during growth, one can obtain both size and shape control of the resulting Al NCs.

View Article and Find Full Text PDF

Transitioning plasmonic metasurfaces into practical, low-cost applications requires meta-atom designs that focus on ease of manufacturability and a robustness with respect to structural imperfections and nonideal substrates. It also requires the use of inexpensive, earth-abundant metals such as Al for plasmonic properties. In this study, we focus on combining two aspects of plasmonic metasurfaces-visible coloration and Fano resonances-in a morphology amenable to scalable manufacturing.

View Article and Find Full Text PDF

Vacuum ultraviolet (VUV) light plays an essential role across science and technology, from molecular spectroscopy to nanolithography and biomedical procedures. Realizing nanoscale devices for VUV light generation and control is critical for next-generation VUV sources and systems, but the scarcity of low-loss VUV materials creates a substantial challenge. We demonstrate a metalens that both generates-by second-harmonic generation-and simultaneously focuses the generated VUV light.

View Article and Find Full Text PDF

Plasmon-induced photocatalysis is a topic of rapidly increasing interest, due to its potential for substantially lowering reaction barriers and temperatures and for increasing the selectivity of chemical reactions. Of particular interest for plasmonic photocatalysis are antenna-reactor nanoparticles and nanostructures, which combine the strong light-coupling of plasmonic nanostructures with reactors that enhance chemical specificity. Here, we introduce Al@TiO core-shell nanoparticles, combining earth-abundant Al nanocrystalline cores with TiO layers of tunable thickness.

View Article and Find Full Text PDF

Clean water is critical for drinking, industrial processes, and aquatic organisms. Existing water treatment and infrastructure are chemically-intensive and based on nearly century-old technologies that fail to meet modern large and decentralized communities. The next-generation of water processes can transition from outdated technologies by utilizing nanomaterials to harness energy from across the electromagnetic spectrum, enabling electrified and solar-based technologies.

View Article and Find Full Text PDF

Light-induced hot carriers derived from the surface plasmons of metal nanostructures have been shown to be highly promising agents for photocatalysis. While both nonthermal and thermalized hot carriers can potentially contribute to this process, their specific role in any given chemical reaction has generally not been identified. Here, we report the observation that the H-D exchange reaction photocatalyzed by Cu nanoparticles is driven primarily by thermalized hot carriers.

View Article and Find Full Text PDF

Plasmonic nanoantennas focus light below the diffraction limit, creating strong field enhancements, typically within a nanoscale junction. Placing a nanostructure within the junction can greatly enhance the nanostructure's innate optical absorption, resulting in intense photothermal heating that could ultimately compromise both the nanostructure and the nanoantenna. Here, we demonstrate a three-dimensional "antenna-reactor" geometry that results in large nanoscale thermal gradients, inducing large local temperature increases in the confined nanostructure reactor while minimizing the temperature increase of the surrounding antenna.

View Article and Find Full Text PDF