Glaucoma, a leading cause of blindness, is a multifactorial condition that leads to progressive loss of retinal ganglion cells (RGCs) and vision. Therapeutic interventions based on reducing ocular hypertension are not always successful. Emerging features of glaucoma include mitochondrial dysfunction and oxidative stress.
View Article and Find Full Text PDFAAV gene therapy for ocular disease has become a reality with the market authorisation of Luxturna for RPE65-linked inherited retinal degenerations and many AAV gene therapies currently undergoing phase III clinical trials. Many ocular disorders have a mitochondrial involvement from primary mitochondrial disorders such as Leber hereditary optic neuropathy (LHON), predominantly due to mutations in genes encoding subunits of complex I, to Mendelian and multifactorial ocular conditions such as dominant optic atrophy, glaucoma and age-related macular degeneration. In this study, we have optimised the nuclear yeast gene, NADH-quinone oxidoreductase (NDI1), which encodes a single subunit complex I equivalent, creating a candidate gene therapy to improve mitochondrial function, independent of the genetic mutation driving disease.
View Article and Find Full Text PDFAge-related macular degeneration (AMD) is the most common cause of blindness in the aged population. However, to date there is no effective treatment for the dry form of the disease, representing 85-90% of cases. AMD is an immensely complex disease which affects, amongst others, both retinal pigment epithelium (RPE) and photoreceptor cells and leads to the progressive loss of central vision.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
June 2022
Recombinant adeno-associated virus (AAV) vectors are one of the main gene delivery vehicles used in retinal gene therapy approaches; however, there is a need to further improve the efficacy, tropism, and safety of these vectors. In this study, using a CMV-EGFP expression cassette, we characterize the retinal utility of AAV-PHP.eB, a serotype recently developed by directed evolution, which can cross the blood-brain barrier and target neurons with high efficacy in mice.
View Article and Find Full Text PDFThe challenge of developing gene therapies for genetic forms of blindness is heightened by the heterogeneity of these conditions. However, mechanistic commonalities indicate key pathways that may be targeted in a gene-independent approach. Mitochondrial dysfunction and axon degeneration are common features of many neurodegenerative conditions including retinal degenerations.
View Article and Find Full Text PDFOptic Atrophy 1 (OPA1) is a mitochondrially targeted GTPase that plays a pivotal role in mitochondrial health, with mutations causing severe mitochondrial dysfunction and typically associated with Dominant Optic Atrophy (DOA), a progressive blinding disease involving retinal ganglion cell loss and optic nerve damage. In the current study, we investigate the use of codon-optimized versions of OPA1 isoform 1 and 7 as potential therapeutic interventions in a range of and models of mitochondrial dysfunction. We demonstrate that both isoforms perform equally well in ameliorating mitochondrial dysfunction in OPA1 knockout mouse embryonic fibroblast cells but that OPA1 expression levels require tight regulation for optimal benefit.
View Article and Find Full Text PDFRetinal ganglion cells (RGCs) are known to be involved in several ocular disorders, including glaucoma and Leber hereditary optic neuropathy (LHON), and hence represent target cells for gene therapies directed towards these diseases. Restricting gene therapeutics to the target cell type in many situations may be preferable compared to ubiquitous transgene expression, stimulating researchers to identify RGC-specific promoters, particularly promoter sequences that may also be appropriate in size to fit readily into recombinant adeno associated viral (AAV) vectors, the vector of choice for many ocular gene therapies. In the current study we analysed EGFP expression driven by various sequences of the putative human NEFH promoter in order to define sequences required for preferential expression in RGCs.
View Article and Find Full Text PDFWith marketing approval of the first ocular gene therapy, and other gene therapies in clinical trial, treatments for inherited retinal degenerations (IRDs) have become a reality. Biallelic mutations in the tubby like protein 1 gene () are causative of IRDs in humans; a mouse knock-out model () is characterized by a similar disease phenotype. We developed a supplementation therapy for mice.
View Article and Find Full Text PDFRP2 mutations cause a severe form of X-linked retinitis pigmentosa (XLRP). The mechanism of RP2-associated retinal degeneration in humans is unclear, and animal models of RP2 XLRP do not recapitulate this severe phenotype. Here, we developed gene-edited isogenic RP2 knockout (RP2 KO) induced pluripotent stem cells (iPSCs) and RP2 patient-derived iPSC to produce 3D retinal organoids as a human retinal disease model.
View Article and Find Full Text PDFWith 329 genes known to be involved in inherited retinal degenerations (IRDs), focus has shifted to generic targets for therapeutics, targets that could provide benefit irrespective of the underlying genetic condition. As one of the most energy-demanding tissues, the retina is acutely sensitive to dysfunction of its energy metabolism. Recent discoveries have shed light on the complex interconnectivity and interdependence of retinal cells on their choice metabolic pathways, highlighting a number of potential targets that could benefit cells in a mutation-independent manner.
View Article and Find Full Text PDFPhenformin, a member of the biguanides class of drugs, has been reported to be efficacious in cancer treatment. The focus of the current study was to establish whether there were direct effects of phenformin on the metabolism and bioenergetics of neuroblastoma SH-SY5Y cancer cells. Cell viability was assessed using the alamar blue assay, flow cytometry analysis using propidium iodide and annexin V stain and poly (ADP-ribose) polymerase analysis.
View Article and Find Full Text PDFWhile individually classed as rare diseases, hereditary retinal degenerations (IRDs) are the major cause of registered visual handicap in the developed world. Given their hereditary nature, some degree of intergenic heterogeneity was expected, with genes segregating in autosomal dominant, recessive, X-linked recessive, and more rarely in digenic or mitochondrial modes. Today, it is recognized that IRDs, as a group, represent one of the most genetically diverse of hereditary conditions - at least 260 genes having been implicated, with 70 genes identified in the most common IRD, retinitis pigmentosa (RP).
View Article and Find Full Text PDFmiRNA dysregulation is a hallmark of many neurodegenerative disorders, including those involving the retina. Up-regulation of miR-1/133 and miR-142, and down-regulation of miR-183/96/182 has been described in the RHO-P347S mouse retina, a model for a common form of inherited blindness. High-throughput LC-MS/MS was employed to analyse the protein expression of predicted targets for these miRNAs in RHO-P347S mouse retinas; 133 potential target genes were identified.
View Article and Find Full Text PDFAs gene therapies for various forms of retinal degeneration progress toward human clinical trial, it will be essential to have a repertoire of safe and efficient vectors for gene delivery to the target cells. Recombinant adeno-associated virus (AAV) serotype 2/2 has been shown to be well tolerated in the human retina and has provided efficacy in human patients for some inherited retinal degenerations. In this study, the AAV2/8 and AAV2/rh10 serotypes have been compared as a means of gene delivery to mammalian photoreceptor cells using a photoreceptor specific promoter for transgene expression.
View Article and Find Full Text PDFSignificant advances have been made over the last decade or two in the elucidation of the molecular pathogenesis of inherited ocular disorders. In particular, remarkable successes have been achieved in exploration of gene-based medicines for these conditions, both in preclinical and in clinical studies. Progress in the development of gene therapies targeted toward correcting the primary genetic defect or focused on modulating secondary effects associated with retinal pathologies are discussed in the review.
View Article and Find Full Text PDFPrimary mitochondrial disorders occur at a prevalence of one in 10 000; ∼50% of these demonstrate ocular pathology. Leber hereditary optic neuropathy (LHON) is the most common primary mitochondrial disorder. LHON results from retinal ganglion cell pathology, which leads to optic nerve degeneration and blindness.
View Article and Find Full Text PDFThe chromatin remodeler CHD5 is expressed in neural tissue and is frequently deleted in aggressive neuroblastoma. Very little is known about the function of CHD5 in the nervous system or its mechanism of action. Here we report that depletion of Chd5 in the developing neocortex blocks neuronal differentiation and leads to an accumulation of undifferentiated progenitors.
View Article and Find Full Text PDFIt has become evident that many human disorders are characterised by mitochondrial dysfunction either at a primary level, due to mutations in genes whose encoded products are involved in oxidative phosphorylation, or at a secondary level, due to the accumulation of mitochondrial DNA (mtDNA) mutations. This has prompted keen interest in the development of cell and animal models and in exploring innovative therapeutic strategies to modulate the mitochondrial deficiencies observed in these diseases. Key advances in these areas are outlined in this review, with a focus on Leber hereditary optic neuropathy (LHON).
View Article and Find Full Text PDFLeber hereditary optic neuropathy (LHON) is a mitochondrially inherited form of visual dysfunction caused by mutations in several genes encoding subunits of the mitochondrial respiratory NADH-ubiquinone oxidoreductase complex (complex I). Development of gene therapies for LHON has been impeded by genetic heterogeneity and the need to deliver therapies to the mitochondria of retinal ganglion cells (RGCs), the cells primarily affected in LHON. The therapy under development entails intraocular injection of a nuclear yeast gene NADH-quinone oxidoreductase (NDI1) that encodes a single subunit complex I equivalent and as such is mutation independent.
View Article and Find Full Text PDFRecombinant adeno-associated virus (AAV) represents an efficient system for neuronal transduction. However, a potential drawback of AAV is its restricted packaging capacity of approximately 5 kb. To bypass this limitation, a number of dual- and triple-vector strategies divide the transgene(s) between two or three AAVs.
View Article and Find Full Text PDFFor dominantly inherited disorders development of gene therapies, targeting the primary genetic lesion has been impeded by mutational heterogeneity. An example is rhodopsin-linked autosomal dominant retinitis pigmentosa with over 150 mutations in the rhodopsin gene. Validation of a mutation-independent suppression and replacement gene therapy for this disorder has been undertaken.
View Article and Find Full Text PDFRecombinant adeno-associated viral (rAAV) vectors have recently been widely used for the delivery of therapeutic transgenes in preclinical and clinical studies for inherited retinal degenerative diseases. Interchanging capsid genes between different AAV serotypes has enabled selective delivery of transgene into specific cell type(s) of the retina. The RP10 form of autosomal dominant retinitis pigmentosa (adRP) is caused by missense mutations within the gene encoding inosine 5'-monophosphate dehydrogenase type 1.
View Article and Find Full Text PDF