Eukaryotic DNA replication initiates from multiple sites on each chromosome called replication origins (origins). In the budding yeast Saccharomyces cerevisiae, origins are defined at discrete sites. Regular spacing and diverse firing characteristics of origins are thought to be required for efficient completion of replication, especially in the presence of replication stress.
View Article and Find Full Text PDFShoot apical meristems (SAMs), which maintain stem cells at the tips of stems, and axillary meristems (AMs), which arise at leaf axils for branch formation, play significant roles in the establishment of plant architecture. Previously, we showed that, in Arabidopsis thaliana, activation of NB-LRR (nucleotide-binding site-leucine-rich repeat)-type UNI proteins affects plant morphology through modulation of the regulation of meristems. However, information about genes involved in the processes was still lacking.
View Article and Find Full Text PDFPatterning of stomata, valves on the plant epidermis, requires the orchestrated actions of signaling components and cell-fate determinants. To understand the regulation of stomatal patterning, we performed a genetic screen using a background that partially lacks stomatal signaling receptors. Here, we report the isolation and characterization of chorus (chor), which confers excessive proliferation of stomatal-lineage cells mediated by SPEECHLESS (SPCH).
View Article and Find Full Text PDFDifferentiation of specialized cell types in multicellular organisms requires orchestrated actions of cell fate determinants. Stomata, valves on the plant epidermis, are formed through a series of differentiation events mediated by three closely related basic-helix-loop-helix proteins: SPEECHLESS (SPCH), MUTE, and FAMA. However, it is not known what mechanism coordinates their actions.
View Article and Find Full Text PDFStomata are turgor-driven epidermal valves on the surface of plants that allow for efficient gas and water exchange between the plant and its environment. The Arabidopsis thaliana basic helix-loop-helix (bHLH) protein, MUTE, is a master regulator of stomatal differentiation where it is required for progression through the stomatal lineage and the differentiation of stomata. The genetic control of stomatal spacing across the epidermal surface is variable in different organs.
View Article and Find Full Text PDFStomata are microscopic pores on the plant epidermis that act as a major passage for the gas and water vapor exchange between a plant and the atmosphere. A pair of specialized guard cells work in concert to adjust pore size to maintain gas exchange while minimizing the water loss. The formation of stomata requires a series of cell-fate transitions from an initial meristemoid mother cell (MMC), to a stem-cell-like precursor meristemoid, to a guard mother cell (GMC), and finally to terminally-differentiated guard cells.
View Article and Find Full Text PDFStomata consist of a pair of guard cells that mediate gas and water-vapour exchange between plants and the atmosphere. Stomatal precursor cells-meristemoids-possess a transient stem-cell-like property and undergo several rounds of asymmetric divisions before further differentiation. Here we report that the Arabidopsis thaliana basic helix-loop-helix (bHLH) protein MUTE is a key switch for meristemoid fate transition.
View Article and Find Full Text PDFThe plasma membrane in plant cells is energized with an electrical potential and proton gradient generated through the action of H+ pumps belonging to the P-type ATPase superfamily. The Arabidopsis genome encodes 11 plasma membrane H+ pumps. Auto-inhibited H+-ATPase isoform 10 (AHA10) is expressed primarily in developing seeds.
View Article and Find Full Text PDF