Whey acidic protein (WAP) has been identified as a major whey protein in milk of a wide range of species and reportedly plays important roles in regulating the proliferation of mammary epithelial cells. However, in some species including humans, WAP is not synthesized in the mammary gland. The presence of WAP in carnivore species has not been reported.
View Article and Find Full Text PDFWe have previously reported the action of whey acidic protein (WAP) inhibiting the proliferation of mouse mammary epithelial cells in the experiments utilizing in vivo and in vitro systems. We report herein the bacteriostatic activity of WAP. Western blot analysis demonstrated successful isolation of WAP from whey fractions of rat milk by column chromatography.
View Article and Find Full Text PDFWhey acidic protein (WAP) is a major whey protein in milk that has structural similarity to the family of serine protease inhibitors with WAP motif domains characterized by a four-disulfide core. We previously reported that enforced expression of the mouse WAP transgene in mammary epithelial cells inhibits their proliferation in vitro and in vivo by means of suppressing cyclin D1 expression (Nukumi et al., 2004, Dev Biol 274: 31-44).
View Article and Find Full Text PDFWhey acidic protein (WAP) is a major component of whey, which has two or three WAP motif domains characterized by a four-disulfide core (4-DSC) structure similar to the serine protease inhibitor. We have previously found that WAP inhibits the proliferation of mammary epithelial cells in vitro and in vivo [N. Nukumi, K.
View Article and Find Full Text PDFAlthough whey acidic protein (WAP) has been identified in the milk of a range of species, it has been predicted that WAP is not secreted into human milk as a result of critical point mutations within the coding region. In the present study, we first investigated computationally the promoter region of mutated human WAP genes by comparing with those of other known WAP genes. Computational database analyses showed that the human WAP promoter region was highly conserved, as in other species with milk WAP.
View Article and Find Full Text PDFIt has been suggested that whey acidic protein (WAP) may function as a protease inhibitor. However, the actual function of WAP remains obscure. We investigated the histological development of the mammary glands of transgenic mice ubiquitously expressing WAP and CAG/WAP transgene.
View Article and Find Full Text PDFWe previously reported that the enforced expression of exogenous whey acidic protein (WAP) significantly inhibited the proliferation of mouse mammary epithelial cells (HC11 and EpH4/H6 cells). This paper presents the first evidence that WAP also depresses the proliferation of mammary tumor cells from mouse (MMT cells) and human (MCF-7 cells). We established WAP-clonal MMT and MCF-7 cell lines, and confirmed the secretion of WAP from the WAP-clonal cells into culture medium.
View Article and Find Full Text PDFAlthough possible biological functions of whey acidic protein (WAP) have been suggested, few studies have focused on investigating the function of WAP. This paper describes evidence for WAP function in lobulo-alveolar development in mammary glands in vivo and in the cell cycle progression of mammary epithelial cells in vitro. Ubiquitous overexpression of WAP transgene impaired only lobulo-alveolar development in the mammary glands of transgenic female mice but not other physiological functions, indicating that the inhibitory function of WAP is specific to mammary alveolar cells.
View Article and Find Full Text PDFAlthough the biological role for whey acidic protein (WAP) in milk has been suggested, its true function is not known. This paper describes evidence for WAP function in the cell-cycle progression of EpH4/K6 (EpH4), mammary epithelial cells in vitro. The forced expression of exogenous WAP significantly impaired the proliferation of EpH4 cells, whereas it did not affect that of NIH3T3 cells.
View Article and Find Full Text PDF