Publications by authors named "Naoko Kamimura"

Patients with severe COVID-19 exhibit a cytokine storm characterized by greatly elevated levels of cytokines. Despite this, the interferon (IFN) response is delayed, contributing to disease progression. Here, we report that SARS-CoV-2 excessively generates small viral RNAs (svRNAs) encoding exact 5' ends of positive-sense genes in human cells and , whereas endemic human coronaviruses (OC43 and 229E) produce significantly fewer similar svRNAs.

View Article and Find Full Text PDF

Specific regulation of target genes by transforming growth factor-β (TGF-β) in a given cellular context is determined in part by transcription factors and cofactors that interact with the Smad complex. In this study, we determined Smad2 and Smad3 (Smad2/3) binding regions in the promoters of known genes in HepG2 hepatoblastoma cells, and we compared them with those in HaCaT epidermal keratinocytes to elucidate the mechanisms of cell type- and context-dependent regulation of transcription induced by TGF-β. Our results show that 81% of the Smad2/3 binding regions in HepG2 cells were not shared with those found in HaCaT cells.

View Article and Find Full Text PDF

Circadian rhythms are common to most organisms and govern much of homeostasis and physiology. Since a significant fraction of the mammalian genome is controlled by the clock machinery, understanding the genome-wide signaling and epigenetic basis of circadian gene expression is essential. BMAL1 is a critical circadian transcription factor that regulates genes via E-box elements in their promoters.

View Article and Find Full Text PDF

Smad4, the common partner Smad, is a key molecule in transforming growth factor-beta (TGF-beta) family signaling. Loss of Smad4 expression is found in several types of cancer, including pancreatic cancer and colon cancer, and is related to carcinogenesis. Here we identified Smad4 binding sites in the promoter regions of over 25 500 known genes by chromatin immunoprecipitation on a microarray (ChIP-chip) in HaCaT human keratinocytes.

View Article and Find Full Text PDF

p53 And Akt are critical players regulating tumorigenesis with opposite effects: whereas p53 transactivates target genes to exert its function as a tumor suppressor, Akt phosphorylates its substrates and transduces downstream survival signals. In addition, p53 and Akt negatively regulate each other to balance survival and death signals within a cell. We now identify PHLDA3 as a p53 target gene that encodes a PH domain-only protein.

View Article and Find Full Text PDF

Unlabelled: Early hepatocellular carcinoma (eHCC) originates from the hepatocytes of chronic liver disease and develops into classical hepatocellular carcinoma (HCC). To identify sequential genetic changes in multistep hepatocarcinogenesis, we analyzed molecular karyotypes using oligonucleotide genotyping 50K arrays. First, 1q21.

View Article and Find Full Text PDF

The Smad2 and Smad3 (Smad2/3) proteins are principally involved in the transmission of transforming growth factor beta (TGF-beta) signaling from the plasma membrane to the nucleus. Many transcription factors have been shown to cooperate with the Smad2/3 proteins in regulating the transcription of target genes, enabling appropriate gene expression by cells. Here we identified 1,787 Smad2/3 binding sites in the promoter regions of over 25,500 genes by chromatin immunoprecipitation on microarray in HaCaT keratinocytes.

View Article and Find Full Text PDF

To identify the chromosomal aberrations associated with the progression of liver cancer, we applied expression imbalance map analysis to gene expression data from 31 hepatocellular carcinomas and 19 noncancerous tissues. Expression imbalance map analysis, which detects mRNA expression imbalance correlated with chromosomal regions, showed that expression gains of 1q21-23 (74%), 8q13-21 (48%), 12q23-24 (41%), 17q12-21(48%), 17q25 (25%), and 20q11 (22%) and losses of 4q13 (48%), 8p12-21 (32%), 13q14 (32%), and 17p13 (29%) were significantly associated with hepatocellular carcinoma. Most regions with altered expression identified by expression imbalance map were also identified in previous reports using comparative genomic hybridization.

View Article and Find Full Text PDF