Publications by authors named "Naoko Atsumi"

Background: Many metastatic prostate cancer prognostics have been suggested, but few are validated. Nodal metastasis burden and baseline biochemical characteristics are overlooked in the currently accepted stratifications for metastatic hormone-sensitive prostate cancer (mHSPC). Prostate-specific membrane antigen positron emission tomography/computed tomography (PSMA PET/CT) is likely to increase the incidence of pelvic nodal and mHSPC undetected by conventional scans.

View Article and Find Full Text PDF

We developed a novel lentiviral vector, pseudotyped with the F and HN proteins from Sendai virus (rSIV.F/HN), that produces long-lasting, high-efficiency transduction of the respiratory epithelium. Here we addressed whether this platform technology can secrete sufficient levels of a therapeutic protein into the lungs to ameliorate a fatal pulmonary disease as an example of its translational capability.

View Article and Find Full Text PDF

The synthesis and thermal stability of oligodeoxynucleotides (ODNs) containing imidazo[5',4':4,5]pyrido[2,3-d]pyrimidine nucleosides 1-4 (N(N), O(O), N(O), and O(N), respectively) with the aim of developing two sets of new base pairing motifs consisting of four hydrogen bonds (H-bonds) is described. The proposed four tricyclic nucleosides 1-4 were synthesized through the Stille coupling reaction of a 5-iodoimidazole nucleoside with an appropriate 5-stannylpyrimidine derivative, followed by an intramolecular cyclization. These nucleosides were incorporated into ODNs to investigate the H-bonding ability.

View Article and Find Full Text PDF

In order to develop novel antigene molecules forming thermally stable triplexes with target DNAs and having nuclease resistance properties, we synthesized oligodeoxynucleotides (ODNs) with various lengths of aminoalkyl-linkers at the 4'alpha position of thymidine and the aminoethyl-linker at the 4'alpha position of 2'-deoxy-5-methylcytidine. Thermal stability of triplexes between these ODNs and a DNA duplex was studied by thermal denaturation. The ODNs containing the nucleoside 2 with the aminoethyl-linker or the nucleoside 3 with the aminopropyl-linker thermally stabilized the triplexes, whereas the ODNs containing the nucleoside 1 with the aminomethyl-linker or the nucleoside 4 with the 2-[N-(2-aminoethyl)carbamoyl]oxy]ethyl-linker thermally destabilized the triplexes.

View Article and Find Full Text PDF