Publications by authors named "Naoki Yokotani"

Salicylic acid (SA) is known to be involved in the immunity against ssp. () that causes bacterial canker in tomato. To identify the candidate genes associated with SA-inducible resistance, transcriptome analysis was conducted via RNA sequencing in tomato plants treated with SA.

View Article and Find Full Text PDF

Sugarcane smut caused by is one of the most devastating sugarcane diseases. Furthermore, causes severe diseases in various crops including rice, tomato, potato, sugar beet, tobacco, and torenia. However, effective disease-resistant genes against these pathogens have not been identified in target crops.

View Article and Find Full Text PDF

Bacterial canker of tomato (Solanum lycopersicon) caused by the Gram-positive bacterium Clavibacter michiganensis subsp. michiganensis (Cmm) is an economically important disease. To understand the host defense response to Cmm infection, transcriptome sequences in tomato cotyledons were analyzed by RNA-seq.

View Article and Find Full Text PDF

The overexpression of rice BSR2 would offer a simple and effective strategy to protect plants from multiple devastating diseases in tomato and Arabidopsis. Many devastating plant diseases are caused by pathogens possessing a wide host range. Fungal Botrytis cinerea and Rhizoctonia solani, as well as bacterial Pseudomonas syringae and Ralstonia pseudosolanacearum are four such pathogens that infect hundreds of plant species, including agronomically important crops, and cause serious diseases, leading to severe economic losses.

View Article and Find Full Text PDF

Plant roots play important roles in absorbing water and nutrients, and in tolerance against environmental stresses. Previously, we identified a rice root-specific pathogenesis-related protein (RSOsPR10) induced by drought, salt, and wounding. expression is strongly induced by jasmonate (JA)/ethylene (ET), but suppressed by salicylic acid (SA).

View Article and Find Full Text PDF

Broad-Spectrum Resistance 1 (BSR1) encodes a rice receptor-like cytoplasmic kinase, and enhances disease resistance when overexpressed. Rice plants overexpressing BSR1 are highly resistant to diverse pathogens, including rice blast fungus. However, the mechanism responsible for this resistance has not been fully characterized.

View Article and Find Full Text PDF

In peaches, fruit flesh browns unattractively after peeling or cutting. A recently developed cultivar, Okayama PEH7, was distinct from other Japanese cultivars, including Okayama PEH8, with respect to its reduced browning potential. Homogenate prepared from Okayama PEH7 flesh had significantly less reddening during the browning reaction.

View Article and Find Full Text PDF

Plants respond to pathogen attack by transcriptionally regulating defense-related genes via various types of transcription factors. We identified a transcription factor in rice, OsNAC111, belonging to the TERN subgroup of the NAC family that was transcriptionally upregulated after rice blast fungus (Magnaporthe oryzae) inoculation. OsNAC111 was localized in the nucleus of rice cells and had transcriptional activation activity in yeast and rice cells.

View Article and Find Full Text PDF

OsCERK1 is a rice receptor-like kinase that mediates the signal of a fungal cell wall component, chitin, by coordinating with a lysin motif (LysM)-containing protein CEBiP. To further elucidate the function of OsCERK1 in the defense response, we disrupted OsCERK1 using an Agrobacterium-mediated gene targeting system based on homologous recombination. In OsCERK1-disrupted lines, the generation of hydrogen peroxide and the alteration of gene expression in response to a chitin oligomer were completely abolished.

View Article and Find Full Text PDF

Regeneration of a lost tissue in an animal is an important issue. Although regenerative studies have a history of research spanning more than a century, the gene functions underlying regulation of the regeneration are mostly unclear. Analysis of knockout animals is a very powerful tool with which to elucidate gene function.

View Article and Find Full Text PDF

OsWRKY76 encodes a group IIa WRKY transcription factor of rice. The expression of OsWRKY76 was induced within 48h after inoculation with rice blast fungus (Magnaporthe oryzae), and by wounding, low temperature, benzothiadiazole, and abscisic acid. Green fluorescent protein-fused OsWRKY76 localized to the nuclei in rice epidermal cells.

View Article and Find Full Text PDF

WRKY transcription factors form a large family of plant-specific transcription factors and participate in plant defense responses either as positive or negative regulators. In this study, we comprehensively analyzed the role of one of the group IIa WRKY transcription factors in rice, OsWRKY28, in the regulation of basal defense responses to a compatible race of the rice blast fungus Magnaporthe oryzae, strain Ina86-137. The expression analyses of the group IIa WRKY transcription factors in rice revealed that OsWRKY28, together with OsWRKY71, exhibit an early-induced expression prior to the late-induced expressions of OsWRKY62 and OsWRKY76.

View Article and Find Full Text PDF

Urodele newts have the remarkable capability of organ regeneration, and have been used as a unique experimental model for more than a century. However, the mechanisms underlying regulation of the regeneration are not well understood, and gene functions in particular remain largely unknown. To elucidate gene function in regeneration, molecular genetic analyses are very powerful.

View Article and Find Full Text PDF

Plants have developed certain adaptive responses to environmental stresses that cause adverse effects on growth. To identify genes involved in the adaptive mechanisms, we constructed a large population of transgenic Arabidopsis expressing rice full-length cDNAs, and performed gain-of-function screening under high-salinity stress. In this study, we identified a rice R2R3-type MYB transcription factor gene, JAmyb, as a gene whose overexpression causes tolerance to high salinity.

View Article and Find Full Text PDF

Fruit ripening in response to treatments with propylene, 1-methycyclopropene (1-MCP), and low temperature was characterized in 'Sanuki Gold' kiwifruit, Actinidia chinensis Planch. Propylene treatment immediately induced rapid fruit softening, increased AC-PG (polygalacturonase) and AC-EXP (expansin) mRNA accumulation, and stimulated an increase in the soluble solid concentration (SSC) and a decrease in titratable acidity (TA). After 3 d exposure to propylene, ethylene production and AC-PL (pectate lyase) mRNA accumulation were observed.

View Article and Find Full Text PDF

Identification of gene function is important not only for basic research but also for applied science, especially with regard to improvements in crop production. For rapid and efficient elucidation of useful traits, we developed a system named FOX hunting (Full-length cDNA Over-eXpressor gene hunting) using full-length cDNAs (fl-cDNAs). A heterologous expression approach provides a solution for the high-throughput characterization of gene functions in agricultural plant species.

View Article and Find Full Text PDF

Environmental stresses are major factors in limiting plant growth and crop production. To find genes improving salt tolerance, the screening of a large population of transgenic Arabidopsis thaliana that expressed rice full-length cDNAs under salinity stress is reported here. In this study one of the isolated salt-tolerant lines, R07303 was analysed in detail.

View Article and Find Full Text PDF

Plant growth and crop production are limited by environmental stress. We used a large population of transgenic Arabidopsis expressing rice full-length cDNAs to isolate the rice genes that improve the tolerance of plants to environmental stress. By sowing T2 seeds of the transgenic lines under conditions of salinity stress, the salt-tolerant line R07047 was isolated.

View Article and Find Full Text PDF

To investigate the regulatory mechanism(s) of ethylene biosynthesis in fruit, transgenic tomatoes with all known LeEIL genes suppressed were produced by RNA interference engineering. The transgenic tomato exhibited ethylene insensitivity phenotypes such as non-ripening and the lack of the triple response and petiole epinasty of seedlings even in the presence of exogenous ethylene. Transgenic fruit exhibited a low but consistent increase in ethylene production beyond 40 days after anthesis (DAA), with limited LeACS2 and LeACS4 expression.

View Article and Find Full Text PDF

Environmental stresses limit plant growth and crop production worldwide. We attempted to isolate rice genes involved in conferring tolerance to environmental stresses by using a transgenic Arabidopsis population expressing full-length cDNAs of rice. Among these lines, a thermotolerant line, R08946, was detected.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists can move genes from one plant to another to see what they do, which is called ectopic gene expression.
  • They used Arabidopsis, a small plant, to test over 23,000 rice genes to study their effects on traits like growth and resistance to stress.
  • This research helps figure out how rice genes can be used to improve other plants, making them better at surviving tough conditions.
View Article and Find Full Text PDF

Plant growth and crop yields are limited by high-temperature stresses. In this study, we attempted to isolate the rice genes responsible for high-temperature stress tolerance using a transformed Arabidopsis population expressing a full-length cDNA library of rice. From approximately 20,000 lines of transgenic Arabidopsis, we isolated a thermotolerant line, R04333, that could survive transient heat stress at the cotyledon stage.

View Article and Find Full Text PDF

The feedback regulation of ethylene biosynthesis in banana [Musa sp. (AAA group, Cavendish subgroup) cv. Grand Nain] fruit was investigated in an attempt to clarify the opposite effect of 1-methylcyclopropene (1-MCP), an ethylene action inhibitor, before and after the onset of ripening.

View Article and Find Full Text PDF

A novel cDNA clone encoding a putative EIN3-like protein (LeEIL4) was identified from ripening tomato (Lycopersicon esculentum) fruit. The predicted amino acid sequence contained conserved domains of EIN3-like proteins in the N-terminal half. In phylogenetic analysis, LeEIL4 was classified into the cluster consisting of EIN3 and EIN3-like proteins known to be involved in ethylene signal transduction.

View Article and Find Full Text PDF