Formation of metal hydrides is a signature chemical property of hydrogen and it can be leveraged to enact both storage and detection of this technologically important yet extremely volatile gas. Palladium shows particular promise as a hydrogen storage medium as well as a platform for creating rapid and reliable H optical sensor devices. Furthermore, alloying Pd with other noble metals provides a technologically simple yet powerful way of enacting control over the structural and catalytic properties of the resultant material.
View Article and Find Full Text PDFHydrogen gas has attracted attention as a new energy carrier, and simple but highly sensitive hydrogen sensors are required. We fabricated an optical hydrogen sensor based on a silicon microring resonator (MRR) with tungsten oxide (WO) using a complementary metal-oxide-semiconductor (CMOS)-compatible process for the MRR and a sol-gel method for the WO layer and investigated its sensing characteristics at device temperatures of 5, 20, and 30 °C. At each temperature, a hydrogen concentration of as low as 0.
View Article and Find Full Text PDFA hydrogen sensor based on plasmonic metasurfaces is demonstrated to exhibit the industry-required 10 s reaction time and sensitivity. It consists of a layer of either Y or WO sandwiched between a top Pd nanodisk and a Au mirror at the base. The phase change layer (Y, WO) reacts with hydrogen, and the corresponding change of the refractive index (permittivity) is detected by the spectral shift of the resonance dip in reflectance at the IR spectral window.
View Article and Find Full Text PDF