Publications by authors named "Naoki Tajiri"

Introduction: Monosodium glutamate (MSG), an umami substance, stimulates the gut-brain axis communication via gut umami receptors and the subsequent vagus nerves. However, the brain mechanism underlying the effect of MSG ingestion during the developmental period on aggression has not yet been clarified. We first tried to establish new experimental conditions to be more appropriate for detailed analysis of the brain, and then investigated the effects of MSG ingestion on aggressive behavior during the developmental stage of an ADHD rat model.

View Article and Find Full Text PDF

Background: Mesenchymal stromal cell (MSC) transplantation therapy is a promising therapy for stroke patients. In parallel, rehabilitation with physical exercise could ameliorate stroke-induced neurological impairment. In this study, we aimed to clarify whether combination therapy of intracerebral transplantation of human modified bone marrow-derived MSCs, SB623 cells, and voluntary exercise with running wheel (RW) could exert synergistic therapeutic effects on a rat model of ischemic stroke.

View Article and Find Full Text PDF

Oligodendrocytes (OLs) form a myelin sheath around neuronal axons to increase conduction velocity of action potential. Although both large and small diameter axons are intermingled in the central nervous system (CNS), the number of myelin wrapping is related to the axon diameter, such that the ratio of the diameter of the axon to that of the entire myelinated-axon unit is optimal for each axon, which is required for exerting higher brain functions. This indicates there are unknown axon diameter-dependent factors that control myelination.

View Article and Find Full Text PDF

Background: The major surgical treatment for Parkinson's disease (PD) is deep brain stimulation (DBS), but a less invasive treatment is desired. Vagus nerve stimulation (VNS) is a relatively safe treatment without cerebral invasiveness. In this study, we developed a wireless controllable electrical stimulator to examine the efficacy of VNS on PD model rats.

View Article and Find Full Text PDF

Preterm infants have a high risk of neonatal white matter injury (WMI) caused by hypoxia-ischemia. Cell-based therapies are promising strategies for neonatal WMI by providing trophic substances and replacing lost cells. Using a rat model of neonatal WMI in which oligodendrocyte progenitors (OPCs) are predominantly damaged, we investigated whether insulin-like growth factor 2 (IGF2) has trophic effects on OPCs and whether OPC transplantation has potential as a cell replacement therapy.

View Article and Find Full Text PDF

Strong stress related to adverse experiences during adolescence can cause mental disorders, as well as affecting brain structure and function. However, the underlying neurobiological mechanisms remain largely unknown. To investigate whether stress induced by adverse experience during adolescence affects oligodendrocyte (OL) remodeling, social defeat stress was applied to 6-week-old adolescent mice for 10 days, followed by behavioral tests and assessments of oligodendrogenesis.

View Article and Find Full Text PDF

Background: Spinal cord stimulation (SCS) exerts neuroprotective effects in animal models of Parkinson's disease (PD). Conventional stimulation techniques entail limited stimulation time and restricted movement of animals, warranting the need for optimizing the SCS regimen to address the progressive nature of the disease and to improve its clinical translation to PD patients.

Objective: Recognizing the limitations of conventional stimulation, we now investigated the effects of continuous SCS in freely moving parkinsonian rats.

View Article and Find Full Text PDF

Middle cerebral artery occlusion in rodents remains a widely used model of ischemic stroke. Recently, we reported the occurrence of retinal ischemia in animals subjected to middle cerebral artery occlusion, owing in part to the circulatory juxtaposition of the ophthalmic artery to the middle cerebral artery. In this study, we examined the eye hemodynamics and visual deficits in middle cerebral artery occlusion-induced stroke rats.

View Article and Find Full Text PDF

The present study used in vitro and in vivo stroke models to demonstrate the safety, efficacy, and mechanism of action of adult human bone marrow-derived NCS-01 cells. Coculture with NCS-01 cells protected primary rat cortical cells or human neural progenitor cells from oxygen glucose deprivation. Adult rats that were subjected to middle cerebral artery occlusion, transiently or permanently, and subsequently received intracarotid artery or intravenous transplants of NCS-01 cells displayed dose-dependent improvements in motor and neurological behaviors, and reductions in infarct area and peri-infarct cell loss, much better than intravenous administration.

View Article and Find Full Text PDF

Cell therapy for disorders of the central nervous system has progressed to a new level of clinical application. Various clinical studies are underway for Parkinson's disease, stroke, traumatic brain injury, and various other neurological diseases. Recent biotechnological developments in cell therapy have taken advantage of the technology of induced pluripotent stem (iPS) cells.

View Article and Find Full Text PDF

With restricted therapeutic opportunities, stroke remains a relevant, critical disease necessitating study. Due to the unique aspect of ischemic strokes, finding approaches to maintain the vigor of the cerebral vasculature, such as increased angiogenesis, may protect against stroke. Ischemic strokes are caused by disruptions in blood movement in the brain, resulting in a torrent of harmful cerebrovasculature modifications.

View Article and Find Full Text PDF

Reorganization of residual descending motor circuits underlies poststroke recovery. We previously clarified a causal relationship between the cortico-rubral tract and intensive limb use-induced functional recovery after internal capsule hemorrhage (ICH). However, other descending tracts, such as the cortico-reticular tract, might also be involved in rehabilitation-induced compensation.

View Article and Find Full Text PDF

Rodents display "empathy" defined as perceived physical pain or psychological stress by cagemates when co-experiencing socially distinct traumatic events. The present study tested the hypothesis that empathy occurs in adult rats subjected to an experimental neurological disorder, by allowing co-experience of stroke with cagemates. Psychological stress was measured by general locomotor activity, Rat Grimace Scale (RGS), and plasma corticosterone.

View Article and Find Full Text PDF

Stroke remains a significant unmet clinical need with limited therapeutic options. The peculiar feature of ischemic stroke is the interruption in brain circulation, resulting in a cascade of detrimental cerebrovasculature alterations. Treatment strategies designed to maintain potency of the cerebrovasculature may protect against stroke.

View Article and Find Full Text PDF

Despite the advances in pharmacological therapies, only the half of depressed patients respond to currently available treatment. Thus, the need for further investigation and development of effective therapies, especially those designed for treatment-resistant depression, has been sorely needed. Although antidepressant effects of mesenchymal stem cells (MSCs) have been reported, the potential benefit of this cell therapy on treatment-resistant depression is unknown.

View Article and Find Full Text PDF

Background: Neuroinflammation is a common therapeutic target for traumatic brain injury (TBI) due to its contribution to delayed secondary cell death and has the potential to occur for years after the initial insult. Exosomes from adipose-derived stem cells (hASCs) containing the long noncoding RNA MALAT1 are a novel, cell-free regenerative approach to long-term recovery after traumatic brain injury (TBI) that have the potential to modulate inflammation at the genomic level. The long noncoding RNA MALAT1 has been shown to be an important component of the secretome of hASCs.

View Article and Find Full Text PDF
Article Synopsis
  • - This study explores the use of bone marrow stromal cells (BMSCs) as a treatment for ischemic stroke and investigates whether electrical stimulation can effectively guide these cells to the damaged brain area in rats.
  • - Male Wistar rats underwent a right middle cerebral artery occlusion (MCAO) and received BMSCs injections combined with electrical stimulation, leading to improvements in behavioral outcomes and a reduction in stroke-induced brain damage compared to a control group.
  • - Results indicated that electrical stimulation not only enhanced the migration of BMSCs but also significantly improved neurological function and reduced infarction areas, highlighting its potential as a therapeutic strategy post-stroke.
View Article and Find Full Text PDF

Cell therapy for Parkinson's disease (PD) began in 1979 with the transplantation of fetal rat dopamine-containing neurons that improved motor abnormalities in the PD rat model with good survival of grafts and axonal outgrowth. Thirty years have passed since the 2 clinical trials using cell transplantation for PD patients were first reported. Recently, cell therapy is expected to develop as a realistic treatment option for PD patients owing to the advancement of biotechnology represented by pluripotent stem cells.

View Article and Find Full Text PDF

Stroke continues to maintain its status as one of the top causes of mortality within the United States. Currently, the only Food and Drug Administration (FDA)-approved drug in place for stroke patients, tissue plasminogen activator (tPA), has a rigid therapeutic window, closing at approximately 4.5 h after stroke onset.

View Article and Find Full Text PDF

The hippocampus is thought to be an important region for depression. However, the relationship between hippocampal neurogenesis and depression is still controversial. Wistar Kyoto (WKY) rats are frequently used as a depression model.

View Article and Find Full Text PDF

Background/aims: Neuroinflammatory processes have been implicated in the pathophysiology of seizure/epilepsy. High mobility group box 1 (HMGB1), a non-histone DNA binding protein, behaves like an inflammatory cytokine in response to epileptogenic insults. Kainic acid (KA) is an excitotoxic reagent commonly used to induce epilepsy in rodents.

View Article and Find Full Text PDF

Enhancing neurogenesis may be a powerful stroke therapy. Here, we tested in a rat model of ischemic stroke the beneficial effects of NSI-189, an orally active, new molecular entity (mol. wt.

View Article and Find Full Text PDF

Oxytocin protects against ischemia-induced inflammation and oxidative stress, and is associated with GABA (γ-aminobutyric acid, an inhibitory neurotransmitter) signaling transduction in neurons. However, the molecular mechanism by which oxytocin affords neuroprotection, especially the interaction between oxytocin receptor and GABA receptor (GABAR), remains to be elucidated. Primary rat neural cells were exposed to oxytocin before induction of experimental acute stroke model via oxygen-glucose deprivation-reperfusion (OGD/R) injury.

View Article and Find Full Text PDF

In testing the hypothesis of Alzheimer's disease (AD)-like pathology in late stage traumatic brain injury (TBI), we evaluated AD pathological markers in late stage TBI model. Sprague-Dawley male rats were subjected to moderate controlled cortical impact (CCI) injury, and 6 months later euthanized and brain tissues harvested. Results from H&E staining revealed significant 33% and 10% reduction in the ipsilateral and contralateral hippocampal CA3 interneurons, increased MHCII-activated inflammatory cells in many gray matter (8-20-fold increase) and white matter (6-30-fold increased) regions of both the ipsilateral and contralateral hemispheres, decreased cell cycle regulating protein marker by 1.

View Article and Find Full Text PDF