Tolerogenic dendritic cells with professional antigen presentation via major histocompatibility complex molecules, co-stimulatory molecules (CD80/86), and interleukin 10 production have attracted significant attention as cellular therapies for autoimmune, allergic, and graft-versus-host diseases. In this study, we developed a cell culture dish equipped with polycation-porphyrin-conjugate-immobilized glass (PA-HP-G) to stimulate immature murine dendritic cell (iDCs). Upon irradiation with a red light at 635 nm toward the PA-HP-G surface, singlet oxygen was generated by the immobilized porphyrins on the PA-HP-G surface.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) is a noninvasive cancer treatment modality that involves the administration of photosensitizers and light irradiation. Previously, we established a polycation-containing hematoporphyrin (aHP) formulation that demonstrated superior antitumor efficacy , than the original hematoporphyrin (HP). In this study, we investigated underlining mechanisms of the high antitumor effect of aHP using cell experiments.
View Article and Find Full Text PDFCombining hyperthermia and chemotherapy for maximum anticancer efficacy remains a challenge because drug-tolerant cancer cells often evade this synergistic treatment due to drug resistance and asynchronous drug release. In this study, multifunctional scaffolds were designed to efficiently treat drug-tolerant breast cancer by improving the sensitization of breast cancer cells and synchronizing anticancer drug release with magnetic hyperthermia. The scaffolds contained microRNA-encapsulated matrix metalloproteinase-cleavable liposomes, doxorubicin-encapsulated thermoresponsive liposomes and FeO nanoparticles.
View Article and Find Full Text PDFAccumulatively, cellular behaviours triggered by biochemical cues have been widely explored and the focus of research is gradually shifting to biophysical cues. Compared to physical parameters such as stiffness, substrate morphology and viscoelasticity, the influence of viscosity on cellular behaviours is relatively unexplored and overlooked. Thus, in this study, the influence of viscosity on the adipogenic and osteogenic differentiation of human mesenchymal stem cells (hMSCs) was investigated by adjusting the viscosity of the culture medium.
View Article and Find Full Text PDFSuper Ohtaka, a fermented beverage of plant extracts, is prepared from approximately 50 kinds of fruits and vegetables. Natural fermentation is mainly performed by lactic acid bacteria ( spp.) and yeast ( spp.
View Article and Find Full Text PDFPancreatic islet transplantation is one of the clinical options for certain types of diabetes. However, difficulty in maintaining islets prior to transplantation limits the clinical expansion of islet transplantations. Our study introduces a dynamic culture platform developed specifically for primary human islets by mimicking the physiological microenvironment, including tissue fluidics and extracellular matrix support.
View Article and Find Full Text PDFTuning cell adhesion geometry can affect cytoskeleton organization and the distribution of cytoskeleton forces, which play critical roles in controlling cell functions. To elucidate the geometrical relationship with cytoskeleton force distribution, it is necessary to control cell morphology. In this study, a series of dextral vortex micropatterns were prepared to precisely control cell morphology for investigating the influence of the curvature degree of adhesion curves on intracellular force distribution and stem cell differentiation at a sub-cellular level.
View Article and Find Full Text PDFChemotherapy is one of the most common strategies for cancer treatment, whereas drug resistance reduces the efficiency of chemotherapy and leads to treatment failure. The mechanism of emerging chemoresistance is complex and the effect of extracellular matrix (ECM) surrounding cells may contribute to drug resistance. Although it is well known that ECM plays an important role in orchestrating cell functions, it remains exclusive how ECM stiffness affects drug resistance.
View Article and Find Full Text PDFCombination of different therapies is an attractive approach for cancer therapy. However, it is a challenge to synchronize different therapies for maximization of therapeutic effects. In this work, a smart composite scaffold that could synchronize magnetic hyperthermia and chemotherapy was prepared by hybridization of magnetic FeO nanoparticles and doxorubicin (Dox)-loaded thermosensitive liposomes with biodegradable polymers.
View Article and Find Full Text PDFWastewater containing antibiotics, organic dyes, and waterborne bacteria is a severe threat to human health and the environment. Amoxicillin has a slow metabolism rate in humans. Methylene blue is mutagenic and carcinogenic.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) is a great potential anti-tumor therapy owing to its non-invasiveness and high spatiotemporal selectivity. However, systemically administered photosensitizers diffuse in the skin and the eyes for a long duration, which cause phototoxicity to bright light and sunlight. Therefore, following PDT, patients must avoid exposure of to light and sunlight to avoid this phototoxicity.
View Article and Find Full Text PDFRecently, plasma membrane-targeted photodynamic therapy has attracted attention as an effective cancer immunotherapeutic strategy. However, the released photosensitizers do not only adhere to the plasma membrane but may also be internalized in the cytosol, in endosomes/lysosomes, hindering investigations of the effects of photosensitizers attached to the plasma membrane. In this study, we developed a cell culture dish with singlet oxygen-generating cell-adhesive glass surfaces that allows investigation of the effects of photosensitizers attached to the plasma membrane.
View Article and Find Full Text PDFThe mechanical properties of an extracellular microenvironment can affect cell functions. The effects of elasticity and viscoelasticity on cell functions have been extensively studied with hydrogels of tunable mechanical properties. However, investigation of the viscosity effect on cell functions is still very limited and it can be tricky to explore how viscosity affects cells in three-dimensional (3D) culture due to the lack of appropriate tools.
View Article and Find Full Text PDFMatrix stiffness has been disclosed as an essential regulator of cell fate. However, it is barely studied how the matrix stiffness affects stem cell functions when cell morphology changes. Thus, in this study, the effect of hydrogel stiffness on adipogenic differentiation of human bone-marrow-derived mesenchymal stem cells (hMSCs) with controlled morphology was investigated.
View Article and Find Full Text PDFPostsurgical treatment of breast cancer remains a challenge with regard to killing residual cancer cells and regenerating breast defects. To prepare composite scaffolds for postoperative use, gelatin is chemically modified with folic acid (FA) and used for hybridization with citrate-modified Fe O nanoparticles (Fe O -citrate NPs) to fabricate Fe O /gelatin composite scaffolds which pore structures are controlled by free ice microparticles. The composite scaffolds have large spherical pores that are interconnected to facilitate cell entry and exit.
View Article and Find Full Text PDFIn recent years, the synergistic effect of photothermal therapy (PTT) and chemotherapy has been recognized as an effective strategy for cancer treatment. Controlling the PTT temperature and drug release profile is desirable for minimizing the unexpected damage to normal cells. In this study, a smart platform of stepwise PTT and chemotherapy has been developed by using composite porous scaffolds of biodegradable black phosphorus (BP) nanosheets, gold nanorods(AuNRs), doxorubicin (Dox)-encapsulated thermosensitive liposomes and biodegradable polymers.
View Article and Find Full Text PDFPathogenic contamination is one of the major causes of clean water shortage, which poses great risk to human health. Herein, g-CN (CN) was firstly introduced to Ag/AgO/BiPO/BiWO (Ag/P/BWO) to construct a novel Z-scheme composite CN-Ag/P/BWO for disinfecting Enterococcus sp. contaminated water.
View Article and Find Full Text PDFPhotothermal nanoparticles are important in photothermal therapy. Combining different nanoparticles can achieve a high photothermal capacity. In this study, composite nanoparticles composed of black phosphorus nanosheets (BPNSs) and gold nanostars (BP-AuNSs) were synthesized by using BPNSs as the reductant.
View Article and Find Full Text PDFCell morphology has been widely investigated for its influence on the functions of normal cells. However, the influence of cell morphology on cancer cell resistance to anti-cancer drugs remains unclear. In this study, micropatterned surfaces were prepared and used to control the spreading area and elongation of human breast cancer cell line.
View Article and Find Full Text PDFBiomimetic microenvironments are important for controlling stem cell functions. In this study, different microenvironmental conditions were investigated for the stepwise control of proliferation and chondrogenic differentiation of human bone-marrow-derived mesenchymal stem cells (hMSCs). The hMSCs were first cultured in collagen porous sponges and then embedded with or without collagen hydrogels for continual culture under different culture conditions.
View Article and Find Full Text PDFSynergistic therapy, especially the combination of photothermal therapy and chemotherapy, has been proposed as an effective therapeutic approach for breast cancer treatment. In this study, a smart platform for synergistic photothermal therapy and chemotherapy was developed by hybridizing doxorubicin-encapsulated thermosensitive liposomes and gold nanorods into porous scaffolds of gelatin and polyglutamic acid (Dox-lipo/AuNR/Gel/PGA). The Dox-lipo/AuNR/Gel/PGA composite scaffolds had good photothermal conversion and temperature-dependent doxorubicin release properties.
View Article and Find Full Text PDFMatrix viscoelastic properties have been shown to have important effects on cell functions. However, the conventional culture methods for investigating the influences of viscoelastic properties on cell functions cannot exclude the influence of cell morphology. Therefore, in this study, cell morphology was well-controlled by using micropatterns, and the influences of the viscosity of the cell culture medium on cell functions under controlled cell morphology were investigated.
View Article and Find Full Text PDFLocalization of tumors during laparoscopic surgery is generally performed by locally injecting India ink into the submucosal layer of the gastrointestinal tract using endoscopy. However, the location of the tumor is obscured because of the black-stained surgical field and the blurring caused by India ink. To solve this problem, in this study, we developed a tissue-adhesive porphyrin with polycations consisting of quaternary ammonium salt groups.
View Article and Find Full Text PDFInterconnected scaffolds are useful for promoting the chondrogenic differentiation of stem cells. Collagen scaffolds with interconnected pore structures were fabricated with poly(lactic acid--glycolic acid) (PLGA) sponge templates. The PLGA-templated collagen scaffolds were used to culture human bone marrow-derived mesenchymal stem cells (hMSCs) to investigate their promotive effect on the chondrogenic differentiation of hMSCs.
View Article and Find Full Text PDFThe treatment of melanoma requires not only the elimination of skin cancer cells but also skin regeneration to heal defects. To achieve this goal, a bifunctional composite scaffold of poly(DL-lactic--glycolic acid) (PLGA), collagen and black phosphorus nanosheets (BPNSs) was prepared by hybridizing a BPNS-embedded collagen sponge with a PLGA knitted mesh. The composite mesh increased the temperature under near-infrared laser irradiation.
View Article and Find Full Text PDF