Purpose: To investigate the effect of a metronomic (low-dose, high-frequency) small-molecule inhibitor of Bcl-2 (TW-37) in combination with radiotherapy on microvascular endothelial cells in vitro and in tumor angiogenesis in vivo.
Methods And Materials: Primary human dermal microvascular endothelial cells were exposed to ionizing radiation and/or TW-37 and colony formation, as well as capillary sprouting in three-dimensional collagen matrices, was evaluated. Xenografts vascularized with human blood vessels were engineered by cotransplantation of human squamous cell carcinoma cells (OSCC3) and human dermal microvascular endothelial cells seeded in highly porous biodegradable scaffolds into the subcutaneous space of immunodeficient mice.
Members of the Bcl-2 family play a major role in the pathobiology of head and neck cancer. We have shown that Bcl-2 orchestrates a cross talk between tumor cells and endothelial cells that have a direct effect on the progression of head and neck squamous cell carcinoma (HNSCC). Notably, Bcl-2 is significantly up-regulated in the tumor-associated endothelial cells compared with the endothelial cells of normal oral mucosa in patients with HNSCC.
View Article and Find Full Text PDFWe present a patient with dialysis-related amyloidosis of the external auditory canals. This diagnosis was supported by histological and immunohistochemical studies. This is to the best of our knowledge the first reported case of amyloidosis of the external auditory canals that relate to the chronic hemodialysis.
View Article and Find Full Text PDF