Background: The human induced pluripotent stem cells (hiPSCs) can generate all the cells composing the human body, theoretically. Therefore, hiPSCs are thought to be a candidate source of stem cells for regenerative medicine. The major challenge of allogeneic hiPSC-derived cell products is their immunogenicity.
View Article and Find Full Text PDFOrganoid technology provides a revolutionary paradigm toward therapy but has yet to be applied in humans, mainly because of reproducibility and scalability challenges. Here, we overcome these limitations by evolving a scalable organ bud production platform entirely from human induced pluripotent stem cells (iPSC). By conducting massive "reverse" screen experiments, we identified three progenitor populations that can effectively generate liver buds in a highly reproducible manner: hepatic endoderm, endothelium, and septum mesenchyme.
View Article and Find Full Text PDFLiver regenerative medicine has attracted attention as a possible alternative to organ transplantation. To address the challenge of liver regenerative medicine, the development of a construction method has been proposed for liver tissue in vitro with a high cell density and high functionality for transplantation into patients with severe liver failure. In this study, we fabricated highly functional three-dimensional hepatic tissue by a bottom-up method using spheroids.
View Article and Find Full Text PDFWe have focused on pluripotent stem cells as a potential source of a hybrid-type artificial liver (HAL) and tried to develop a method for differentiating the pluripotent stem cells into cells of a hepatic lineage. In this study, we investigated the hepatic differentiation of mouse embryonic stem (ES) cells and induced pluripotent stem (iPS) cells by applying hollow fiber (HF)/organoid culture method, in which cultured cells form a cellular aggregate called an "organoid" in the lumen of the HF. ES and iPS cells were injected into HFs to induce organoid formation, and cells were cultured.
View Article and Find Full Text PDF