AbstractRandom search theories predict that animals employ movement patterns that optimize encounter rates with target resources. However, animals are not always able to achieve the best search strategy. Energy depletion, for example, limits searchers' movement activities, forcing them to adjust their behaviors before and after encounters.
View Article and Find Full Text PDFJ Comp Physiol A Neuroethol Sens Neural Behav Physiol
May 2021
Investigating the locomotion mechanisms of animals improves our understanding of both their inherent movements and responses to external stimuli. Moreover, identifying the movement patterns of animals reveals their foraging search efficiency. The navigational mechanisms of foraging ants have been well studied; they present typical search strategies for pinpointing their goal.
View Article and Find Full Text PDFTonic immobility (TI) is an effective anti-predator strategy. However, long immobility status on the ground increases the risk of being eaten by predators, and thus insects must rouse themselves when appropriate stimulation is provided. Here, the strength of vibration causing arousal from the state of TI was examined in strains artificially selected for longer duration of TI (L-strains: long sleeper) in a beetle.
View Article and Find Full Text PDFTracking animal movements such as walking is an essential task for understanding how and why animals move in an environment and respond to external stimuli. Different methods that implemented image analysis and a data logger such as GPS have been used in laboratory experiments and in field studies, respectively. Recently, animal movement patterns without stimuli have attracted an increasing attention in search for common innate characteristics underlying all of their movements.
View Article and Find Full Text PDF