We previously identified 3-chloro-N-{(S)-[3-(1-ethyl-1H-pyrazol-4-yl)phenyl][(2S)-piperidine-2-yl]methyl}-4-(trifluoromethyl)pyridine-2-carboxamide (5, TP0439150) as a potent and orally available glycine transporter 1 (GlyT1) inhibitor. In this article, we describe our identification of 1-methyl-N-(propan-2-yl)-N-({2-[4-(trifluoromethoxy)phenyl]pyridin-4-yl}methyl)-1H-imidazole-4-carboxamide (7n) as a structurally diverse back-up compound of 5, using central nervous system multiparameter optimization (CNS MPO) as a drug-likeness guideline. Compound 7n showed a higher CNS MPO score and different physicochemical properties as compared to 5.
View Article and Find Full Text PDFPituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic neuropeptide widely distributed in the nervous system. Recently, PACAP was shown to be involved in restraint stress-induced corticosterone release and concomitant expression of the genes involved in hypothalamic-pituitary-adrenal (HPA) axis activation. Therefore, in this study, we have addressed the types of stressors and the levels of the HPA axis in which PACAP signaling is involved using mice lacking PACAP (PACAP⁻/⁻).
View Article and Find Full Text PDFPituitary adenylate cyclase-activating polypeptide (PACAP) is a peptidergic neurotransmitter that is expressed in high levels in nervous systems. Here, we investigated the roles of PACAP in autonomic system regulation by evaluating the changes caused in the autonomic nerve activities after injecting PACAP into the central nervous system (CNS) and examining stress-induced blood glucose changes in PACAP-deficient (PACAP-/-) mice. Renal sympathetic nerve activity (RSNA), blood pressure, and heart rate were elevated after injecting PACAP into the third cerebral ventricle (3CV).
View Article and Find Full Text PDF