Extremely low-frequency, low-intensity electromagnetic field (ELF-EMF) therapy is a non-invasive brain stimulation method that can modulate neuroprotection and neuroplasticity. ELF-EMF was recently shown to enhance recovery in human stroke in a small pilot clinical trial (NCT04039178). ELF-EMFs encompass a wide range of frequencies, typically ranging from 1 to 100 Hz, and their effects can vary depending on the specific frequency employed.
View Article and Find Full Text PDFSpinal cord injury (SCI) induces severe motor and sensory dysfunction. We previously showed the neuroprotective effects of COA-Cl, a novel synthesized adenosine analog, in a rat stroke model. In this study, we evaluated the neuroprotective effects of COA-Cl in acute phase of SCI.
View Article and Find Full Text PDFBackground: Electroconvulsive therapy (ECT) is effective for treating depression. However, the mechanisms underlying the antidepressant effects of ECT remain unknown. Depressed patients exhibit abnormal Ca kinetics.
View Article and Find Full Text PDF. Although the effect of rehabilitation is influenced by aspects of the training protocol, such as initiation time and intensity of training, it is unclear whether training protocol modifications affect the corticospinal projections. .
View Article and Find Full Text PDFCa -induced Ca release (CICR) via type-3 ryanodine receptor enhances neurotransmitter release in frog motor nerve terminals. To test a possible role of synaptic vesicle in CICR, we examined the effects of loading of EGTA, a Ca chelator, into synaptic vesicles and depolymerization of actin fibers. Intravesicular EGTA loading via endocytosis inhibited the ryanodine sensitive enhancement of transmitter release induced by tetanic stimulation and the associated rises in intracellular-free Ca ([Ca ] : Ca transients).
View Article and Find Full Text PDFBackground: The involvement of neurotrophic factors such as brain-derived neurotrophic factor (BDNF) in functional recovery after spinal cord injury (SCI) by treadmill training has been suggested. The precise mechanism is poorly understood. However, muscle-derived bioactive molecules (myokines) are known to be produced by muscle contraction.
View Article and Find Full Text PDFDescending spinal pathways (corticospinal, rubrospinal, and reticulospinal) are believed to contribute to functional recovery resulting from rehabilitative training after stroke. However, the contribution of each pathway remains unclear. In the current study, we investigated rehabilitation-induced functional recovery and remodelling of the descending spinal pathways after severe cortical stroke in rats followed by 3 weeks of various rehabilitation [constraint-induced movement therapy (CIMT), skilled forelimb reaching, rotarod, and treadmill exercise].
View Article and Find Full Text PDFTask-specific rehabilitative training is commonly used for chronic stroke patients. Axonal remodeling is believed to be one mechanism underlying rehabilitation-induced functional recovery, and significant roles of the corticospinal pathway have previously been demonstrated. Brainstem-spinal pathways, as well as the corticospinal tract, have been suggested to contribute to skilled motor function and functional recovery after brain injury.
View Article and Find Full Text PDFStroke causes long-term disability, and rehabilitative training is commonly used to improve the consecutive functional recovery. Following brain damage, surviving neurons undergo morphological alterations to reconstruct the remaining neural network. In the motor system, such neural network remodeling is observed as a motor map reorganization.
View Article and Find Full Text PDFMotor map reorganization is believed to be one mechanism underlying rehabilitation-induced functional recovery. Although the ipsilesional secondary motor area has been known to reorganize motor maps and contribute to rehabilitation-induced functional recovery, it is unknown how the secondary motor area is reorganized by rehabilitative training. In the present study, using skilled forelimb reaching tasks, we investigated neural network remodeling in the rat rostral forelimb area (RFA) of the secondary motor area during 4weeks of rehabilitative training.
View Article and Find Full Text PDFBackground And Objective: Endogenous neurogenesis is associated with functional recovery after stroke, but the roles it plays in such recovery processes are unknown. This study aims to clarify the roles of endogenous neurogenesis in functional recovery and motor map reorganization induced by rehabilitative therapy after stroke by using a rat model of cerebral ischemia (CI).
Methods: Ischemia was induced via photothrombosis in the caudal forelimb area of the rat cortex.
Background: Exercise in the early stage after stroke onset has been shown to facilitate the recovery from physical dysfunction. However, the mechanism of recovery has not been clarified. In this study, the effect of exercise on spatial memory function recovery in the early stage was shown, and the mechanism of recovery was discussed using a rat model of brain embolism.
View Article and Find Full Text PDFBackground: A previous study in our laboratory showed the neuroprotective effects of COA-Cl, a novel synthesized adenosine analog, in a rat cerebral ischemia model. The purpose of the present study was to evaluate the neuroprotective effects of COA-Cl in intracerebral hemorrhage (ICH), another common type of stroke, and investigate potential mechanisms of action.
Methods: Adult Sprague-Dawley rats received an injection of 100 µl autologous whole blood into the right basal ganglia.
Ischemic tolerance (IT) is induced by a variety of insults to the brain (e.g., nonfatal ischemia, heat and hypoxia) and it provides a strong neuroprotective effect.
View Article and Find Full Text PDFThe present study investigates the potential protective effects of granulocyte colony-stimulating factor (G-CSF) and underlying mechanisms in a gerbil model of global cerebral ischemia. We examined neuronal death, inflammatory reaction and neurogenesis in hippocampus 72 h after transient forebrain ischemia and investigated functional deficits. G-CSF was administered intraperitoneally 24 h before ischemia and then daily.
View Article and Find Full Text PDF2Cl-C.OXT-A (COA-Cl) is a novel nucleic acid analog that enhances angiogenesis through extracellular signal-regulated kinase 1 or 2 (ERK1/2) activation. ERK1/2 is a well-known kinase that regulates cell survival, proliferation and differentiation in the central nervous system.
View Article and Find Full Text PDFThe present study investigates the neurological protective effects of edaravone against global brain ischemia. Gerbils were treated with edaravone (3mg/kg; i.p.
View Article and Find Full Text PDFPrevious studies have demonstrated that the generation of reactive oxygen species and an excessive inflammatory reaction are involved in the progression of neural damage following brain ischemia. In this study, we focused on the anti-inflammatory and antioxidant properties of eicosapentaenoic acid (EPA). Gerbils were treated intraperitoneally with 500 mg/kg of EPA ethyl for 4 weeks until the day of forebrain ischemia, which was induced by occluding the bilateral common carotid artery for 5 minutes.
View Article and Find Full Text PDFOur previous studies have demonstrated that thrombin plays an important role in intracerebral hemorrhage (ICH)-induced brain injury and edema formation. We, therefore, examined whether nafamostat mesilate (FUT), a serine protease inhibitor, can reduce ICH-induced brain injury. Anesthetized male Sprague-Dawley rats received an infusion of autologous whole blood (100 microL), thrombin (5U/50 microL) or type VII collagenase (0.
View Article and Find Full Text PDF