Resection of double-strand breaks (DSBs) plays a critical role in their detection and appropriate repair. The 3' ssDNA protrusion formed through resection activates the ATR-dependent DNA damage response (DDR) and is required for DSB repair by homologous recombination (HR). Here we report that PHF11 (plant homeodomain finger 11) encodes a previously unknown DDR factor involved in 5' end resection, ATR signaling, and HR.
View Article and Find Full Text PDFMCM8-9 complex is required for homologous recombination (HR)-mediated repair of double-strand breaks (DSBs). Here we report that MCM8-9 is required for DNA resection by MRN (MRE11-RAD50-NBS1) at DSBs to generate ssDNA. MCM8-9 interacts with MRN and is required for the nuclease activity and stable association of MRN with DSBs.
View Article and Find Full Text PDFThe Mre11-Rad50-Xrs2/NBS1 (MRX/N) nuclease/ATPase complex plays structural and catalytic roles in the repair of DNA double-strand breaks (DSBs) and is the DNA damage sensor for Tel1/ATM kinase activation. Saccharomyces cerevisiae Sae2 can function with MRX to initiate 5'-3' end resection and also plays an important role in attenuation of DNA damage signaling. Here we describe a class of mre11 alleles that suppresses the DNA damage sensitivity of sae2Δ cells by accelerating turnover of Mre11 at DNA ends, shutting off the DNA damage checkpoint and allowing cell cycle progression.
View Article and Find Full Text PDFDuring meiosis in Saccharomyces cerevisiae, the HOP2 and MND1 genes are essential for recombination. A previous biochemical study has shown that budding yeast Hop2-Mnd1 stimulates the activity of the meiosis-specific strand exchange protein ScDmc1 only 3-fold, whereas analogous studies using mammalian homologs show >30-fold stimulation. The HOP2 gene was recently discovered to contain a second intron that lies near the 3'-end.
View Article and Find Full Text PDFThe RecBCD enzyme is important for both restriction of foreign DNA and recombinational DNA repair. Switching enzyme function from the destructive antiviral state to the productive recombinational state is regulated by the recombination hotspot, χ (5'-GCTGGTGG-3'). Recognition of χ is unique in that it is recognized as a specific sequence within single-stranded DNA (ssDNA) during DNA translocation and unwinding by RecBCD.
View Article and Find Full Text PDFThe RecBCD enzyme is a complex heterotrimeric helicase/nuclease that initiates recombination at double-stranded DNA breaks. In Escherichia coli, its activities are regulated by the octameric recombination hotspot, χ (5'-GCTGGTGG), which is read as a single-stranded DNA sequence while the enzyme is unwinding DNA at over ∼1,000 bp/s. Previous studies implicated the RecC subunit as the "χ-scanning element" in this process.
View Article and Find Full Text PDFThe nature of a species remains a fundamental and controversial question. The era of genome/metagenome sequencing has intensified the debate in prokaryotes because of extensive horizontal gene transfer. In this study, we conducted a genome-wide survey of outcrossing homologous recombination in the highly sexual bacterial species Helicobacter pylori.
View Article and Find Full Text PDFBackground: The genome of Helicobacter pylori, an oncogenic bacterium in the human stomach, rapidly evolves and shows wide geographical divergence. The high incidence of stomach cancer in East Asia might be related to bacterial genotype. We used newly developed comparative methods to follow the evolution of East Asian H.
View Article and Find Full Text PDFEpigenetic DNA methylation is involved in many biological processes. An epigenetic status can be altered by gain or loss of a DNA methyltransferase gene or its activity. Repair of DNA damage can also remove DNA methylation.
View Article and Find Full Text PDFThe birth and death of genes is central to adaptive evolution, yet the underlying genome dynamics remain elusive. The availability of closely related complete genome sequences helps to follow changes in gene contents and clarify their relationship to overall genome organization. Helicobacter pylori, bacteria in our stomach, are known for their extreme genome plasticity through mutation and recombination and will make a good target for such an analysis.
View Article and Find Full Text PDFThe RecF pathway of Escherichia coli is important for recombinational repair of DNA breaks and gaps. Here ;we reconstitute in vitro a seven-protein reaction that recapitulates early steps of dsDNA break repair using purified RecA, RecF, RecO, RecR, RecQ, RecJ, and SSB proteins, components of the RecF system. Their combined action results in processing of linear dsDNA and its homologous pairing with supercoiled DNA.
View Article and Find Full Text PDFFluorescent fusion proteins are exceedingly useful for monitoring protein localization in situ or visualizing protein behavior at the single molecule level. Unfortunately, some proteins are rendered inactive by the fusion. To circumvent this problem, we fused a hyperactive RecA protein (RecA803 protein) to monomeric red fluorescent protein (mRFP1) to produce a functional protein (RecA-RFP) that is suitable for in vivo and in vitro analysis.
View Article and Find Full Text PDFLoss of a type II restriction-modification (RM) gene complex, such as EcoRI, from a bacterial cell leads to death of its descendent cells through attack by residual restriction enzymes on undermethylated target sites of newly synthesized chromosomes. Through such post-segregational host killing, these gene complexes impose their maintenance on their host cells. This finding led to the rediscovery of type II RM systems as selfish mobile elements.
View Article and Find Full Text PDFNucleic Acids Res
June 2009
Cleavage of a DNA replication fork leads to fork restoration by recombination repair. In prokaryote cells carrying restriction-modification systems, fork passage reduces genome methylation by the modification enzyme and exposes the chromosome to attack by the restriction enzyme. Various observations have suggested a relationship between the fork and Type I restriction enzymes, which cleave DNA at a distance from a recognition sequence.
View Article and Find Full Text PDFSeveral type II restriction-modification gene complexes can force their maintenance on their host bacteria by killing cells that have lost them in a process called postsegregational killing or genetic addiction. It is likely to proceed by dilution of the modification enzyme molecule during rounds of cell division following the gene loss, which exposes unmethylated recognition sites on the newly replicated chromosomes to lethal attack by the remaining restriction enzyme molecules. This process is in apparent contrast to the process of the classical types of postsegregational killing systems, in which built-in metabolic instability of the antitoxin allows release of the toxin for lethal action after the gene loss.
View Article and Find Full Text PDFIn Escherichia coli, homologous recombination initiated at double-stranded DNA breaks requires the RecBCD enzyme, a multifunctional heterotrimeric complex that possesses processive helicase and exonuclease activities. Upon encountering the DNA regulatory sequence, chi, the enzymatic properties of RecBCD enzyme are altered. Its helicase activity is reduced, the 3'-->5'nuclease activity is attenuated, the 5'-->3' nuclease activity is up-regulated, and it manifests an ability to load RecA protein onto single-stranded DNA.
View Article and Find Full Text PDFAppl Environ Microbiol
August 2006
Genome sequence comparisons among multiple species of Pyrococcus, a hyperthermophilic archaeon, revealed a linkage between a putative restriction-modification gene complex and several large genome polymorphisms/rearrangements. From a region apparently inserted into the Pyrococcus abyssi genome, a hyperthermoresistant restriction enzyme [PabI; 5'-(GTA/C)] with a novel structure was discovered. In the present work, the neighboring methyltransferase homologue, M.
View Article and Find Full Text PDFThe Bacillus subtilis AddAB enzyme possesses ATP-dependent helicase and nuclease activities, which result in the unwinding and degradation of double-stranded DNA (dsDNA) upon translocation. Similar to its functional counterpart, the Escherichia coli RecBCD enzyme, it also recognizes and responds to a specific DNA sequence, referred to as Chi (chi). Recognition of chi triggers attenuation of the 3'- to 5'-nuclease, which permits the generation of recombinogenic 3'-overhanging, single-stranded DNA (ssDNA), terminating at chi.
View Article and Find Full Text PDFPrevious works have demonstrated that DNA breaks generated by restriction enzymes stimulate, and are repaired by, homologous recombination with an intact, homologous DNA region through the function of lambdoid bacteriophages lambda and Rac. In the present work, we examined the effect of bacteriophage functions, expressed in bacterial cells, on restriction of an infecting tester phage in a simple plaque formation assay. The efficiency of plaque formation on an Escherichia coli host carrying EcoRI, a type II restriction system, is not increased by the presence of Rac prophage-presumably because, under the single-infection conditions of the plaque assay, a broken phage DNA cannot find a homologue with which to recombine.
View Article and Find Full Text PDFGenet Vaccines Ther
October 2005
Background: Gene targeting in vivo provides a potentially powerful method for gene analysis and gene therapy. In order to sensitively detect and accurately measure designed sequence changes, we have used a transgenic mouse system, MutaMouse, which has been developed for detection of mutation in vivo. It carries bacteriophage lambda genome with lacZ+ gene, whose change to lacZ-negative allele is detected after in vitro packaging into bacteriophage particles.
View Article and Find Full Text PDFIn Escherichia coli, chi (5'-GCTGGTGG-3') is a recombination hotspot recognized by the RecBCD enzyme. Recognition of chi reduces both nuclease activity and translocation speed of RecBCD and activates RecA-loading ability. RecBCD has two motor subunits, RecB and RecD, which act simultaneously but independently.
View Article and Find Full Text PDFRecBCD enzyme is a heterotrimeric helicase/nuclease that initiates homologous recombination at double-stranded DNA breaks. Several of its activities are regulated by the DNA sequence chi (5'-GCTGGTGG-3'), which is recognized in cis by the translocating enzyme. When RecBCD enzyme encounters chi, the intensity and polarity of its nuclease activity are changed, and the enzyme gains the ability to load RecA protein onto the chi-containing, unwound single-stranded DNA.
View Article and Find Full Text PDFBackground: Double-strand breakage of chromosomal DNA is obviously a serious threat to cells because various activities of the chromosome depend on its integrity. However, recent experiments suggest that such breakage may occur frequently during "normal" growth in various organisms - from bacteria through vertebrates, possibly through arrest of a replication fork at some endogenous DNA damage.
Results: In order to learn how the recombination processes contribute to generation and processing of the breakage, large (> 2000 kb) linear forms of Escherichia coli chromosome were detected by pulsed-field gel electrophoresis in various recombination-defective mutants.