Publications by authors named "Naoaki Nakayama"

It is well known that type 2 diabetes mellitus is frequently associated with vascular dysfunction and an elevated systemic blood pressure, yet the underlying mechanisms are not completely understood. We previously reported that in mesenteric arteries from established type 2 diabetic Otsuka Long-Evans Tokushima fatty (OLETF) rats, which exhibit endothelial dysfunction, there is an imbalance between endothelium-derived vasodilators [namely, nitric oxide (NO) and hyperpolarizing factor (EDHF)] and vasoconstrictors [contracting factors (EDCFs) such as cyclooxygenase (COX)-derived prostanoids]. Here, we investigated whether the angiotensin II receptor antagonist losartan might improve endothelial dysfunction in OLETF rats at the established stage of diabetes.

View Article and Find Full Text PDF

Endothelin (ET)-1 is a likely candidate for a key role in diabetic vascular complications. However, no abnormalities in the vascular responsiveness to ET-1 have been identified in the chronic stage of type 2 diabetes. Our goal was to look for abnormalities in the roles played by ET receptors (ET(A) and ET(B)) in the mesenteric artery of the type 2 diabetic Goto-Kakizaki (GK) rat and to identify the molecular mechanisms involved.

View Article and Find Full Text PDF

Accumulating evidence demonstrates that dietary intake of n-3 polyunsaturated fatty acids (PUFAs) is associated with a reduced incidence of several cardiovascular diseases that involve endothelial dysfunction. However, the molecular mechanism remains unclear. We previously reported that mesenteric arteries from type 2 diabetic Otsuka Long-Evans Tokushima fatty (OLETF) rats exhibit endothelial dysfunction, leading to an imbalance between endothelium-derived vasodilators [namely, nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF)] and vasoconstrictors [endothelium-derived contracting factors (EDCFs)] [namely cyclooxygenase (COX)-derived prostanoids] (Am J Physiol Heart Circ Physiol 293:H1480-H1490, 2007).

View Article and Find Full Text PDF

Thromboxane A(2) (TXA(2)) is thought to contribute to the development of diabetic complications. We tested the hypothesis that the impaired endothelial function seen in Otsuka Long-Evans Tokushima Fatty (OLETF) rats (a type 2 diabetic model) might be improved by chronic treatment with ozagrel, a TXA(2) synthase inhibitor. In mesenteric arteries from OLETF rats (40-46 weeks old) [vs.

View Article and Find Full Text PDF

Diabetes mellitus impairs endothelial function, an effect that can be considered a hallmark of the development of cardiovascular diseases in diabetics. Cilostazol, a selective phosphodiesterase 3 inhibitor, is currently used to treat patients with diabetic vascular complications. However, the effects of cilostazol on responses mediated by endothelium-derived relaxing [in particular, nitric oxide (NO) and hyperpolarizing factors (EDHF)] and contracting factors remain unclear.

View Article and Find Full Text PDF