Publications by authors named "Naoaki Murao"

Establishing a technological platform for creating clinical compounds inhibiting intracellular protein-protein interactions (PPIs) can open the door to many valuable drugs. Although small molecules and antibodies are mainstream modalities, they are not suitable for a target protein that lacks a deep cavity for a small molecule to bind or a protein found in intracellular space out of an antibody's reach. One possible approach to access these targets is to utilize so-called middle-size cyclic peptides (defined here as those with a molecular weight of 1000-2000 g/mol).

View Article and Find Full Text PDF

Approximately 280 people from pharmaceutical industries, contractors, academic institutions and regulatory authorities attended the 13th Japan Bioanalysis Forum Symposium. The symposium was held via web to prevent the spread of COVID-19 from the 28 February to 2 March 2022. The theme of the symposium was 'All for One Goal', and the event has provided an opportunity for open discussion among researchers with different backgrounds but who share a common goal: .

View Article and Find Full Text PDF

Approximately 300 people associated with pharmaceutical industries, contractors, academic institutions and regulatory authorities attended the 12th Japan Bioanalysis Forum Symposium. The webinar was conducted from 9 to 11 March 2021. The theme of the symposium was 'for the next generation', and the event provided 'an opportunity for young researchers in bioanalysis (including students)' and 'an opportunity to discuss new frontiers of bioanalysis'.

View Article and Find Full Text PDF

SKY59 or RO7112689 is a humanized monoclonal antibody against complement protein C5 with pH-dependent C5-binding and neonatal Fc receptor-mediated recycling capabilities, which result in long-lasting neutralization of C5. We developed and validated a novel total drug assay for quantification of target-binding competent SKY59 in the presence of endogenous C5 in cynomolgus monkey plasma. The target-binding competent SKY59 was determined after complex formation by the addition of recombinant monkey C5 using goat anti-human IgG-heavy chain monkey-adsorbed polyclonal antibody as a capture antibody and rabbit anti-C5 monoclonal antibody (mAb) non-competing with SKY59 for detection.

View Article and Find Full Text PDF

The extracellular adenosine triphosphate (ATP) concentration is highly elevated in the tumor microenvironment (TME) and remains tightly regulated in normal tissues. Using phage display technology, we establish a method to identify an antibody that can bind to an antigen only in the presence of ATP. Crystallography analysis reveals that ATP bound in between the antibody-antigen interface serves as a switch for antigen binding.

View Article and Find Full Text PDF

Background: Phosphate is absorbed in the small intestine via passive flow and active transport.NaPi-IIb, a type II sodium-dependent phosphate transporter, is considered to mediate active phosphate transport in rodents. To study the regulation of intestinal phosphate transport in chronic kidney disease (CKD), we analyzed the expression levels of NaPi-IIb, pituitary-specific transcription factor 1 (PiT-1) and PiT-2 and the kinetics of intestinal phosphate transport using two CKD models.

View Article and Find Full Text PDF

Immunogenicity is a key factor capable of influencing the efficacy and safety of therapeutic antibodies. A recently developed method called MHC-associated peptide proteomics (MAPPs) uses liquid chromatography/mass spectrometry to identify the peptide sequences derived from a therapeutic protein that are presented by major histocompatibility complex class II (MHC II) on antigen-presenting cells, and therefore may induce immunogenicity. In this study, we developed a MAPPs technique (called Ab-MAPPs) that has high throughput and can efficiently identify the MHC II-presented peptides derived from therapeutic antibodies using magnetic nanoparticle beads coated with a hydrophilic polymer in the immunoprecipitation process.

View Article and Find Full Text PDF

Background: Methotrexate (MTX) is one of the most widely used medications to treat rheumatoid arthritis (RA), and recent studies have also suggested the potential benefit of the drug for the treatment of osteoarthritis (OA) of the knee. MTX is commonly administered in oral formulations, but is often associated with systemic adverse reactions. In an attempt to address this issue, we have shown previously that a conjugate of hyaluronic acid (HA) and MTX exhibits potential as a drug candidate for intra-articular treatment of inflammatory arthritis.

View Article and Find Full Text PDF

A versatile immunoaffinity liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed to quantify the total concentration of a protein-based antigen in non-clinical pharmacokinetics (PK) studies of a human monoclonal antibody drug. The method combines using magnetic beads that have been coated with a commercial anti-human Fc region antibody to capture an immune complex of the antigen and antibody drug, with subsequent digestion and quantification of the antigen-derived tryptic peptide via LC-MS/MS. Although a typical immunoassay or an immunoaffinity LC-MS/MS assay requires an antigen-specific antibody that uses a different epitope from the antibody drug, this method requires only a commercial anti-human Fc region antibody.

View Article and Find Full Text PDF

To understand the risk of hypoglycemia associated with urinary glucose excretion (UGE) induced by sodium-glucose cotransporter (SGLT) inhibitors, it is necessary to know the relationship between the ratio of contribution of SGLT2 vs. SGLT1 to renal glucose reabsorption (RGR) and the glycemic levels in vivo. To examine the contributions of SGLT2 and SGLT1 in normal rats, we compared the RGR inhibition by tofogliflozin, a highly specific SGLT2 inhibitor, and phlorizin, an SGLT1 and SGLT2 (SGLT1/2) inhibitor, at plasma concentrations sufficient to completely inhibit rat SGLT2 (rSGLT2) while inhibiting rSGLT1 to different degrees.

View Article and Find Full Text PDF

Interleukin-6 (IL-6) is a principal proinflammatory cytokine inducing the acute phase response in various tissues, including liver. Here, we adopt the FD-LC-MS/MS method, consisting of fluorogenic derivatization (FD), separation by liquid chromatography (LC), and identification of proteins by LC-tandem mass spectrometry (MS/MS), to reveal how exposure to IL-6 alters temporally the intracellular secretory acute phase response (sAPR) proteins expressed in human hepatocytes as compared to non-exposure. Nine altered sAPR proteins were identified in cultures in response to IL-6.

View Article and Find Full Text PDF

The MAP kinase pathway is one of the most important pathways involved in cell proliferation and differentiation, and its components are promising targets for antitumor drugs. Design and synthesis of a novel MEK inhibitor, based on the 3D-structural information of the target enzyme, and then multidimensional optimization including metabolic stability, physicochemical properties and safety profiles were effectively performed and led to the identification of a clinical candidate for an orally available potent MEK inhibitor, CH4987655, possessing a unique 3-oxo-oxazinane ring structure at the 5-position of the benzamide core structure. CH4987655 exhibits slow dissociation from the MEK enzyme, remarkable in vivo antitumor efficacy both in mono- and combination therapy, desirable metabolic stability, and insignificant MEK inhibition in mouse brain, implying few CNS-related side effects in human.

View Article and Find Full Text PDF

Skeletal dysplasias are a group of genetic disorders characterized by severe impairment of bone growth. Various forms of them add to produce a significant morbidity and mortality, yet no efficient drug therapy has been developed to date. We previously demonstrated that C-type natriuretic peptide (CNP), a member of the natriuretic peptide family, is a potent stimulator of endochondral bone growth.

View Article and Find Full Text PDF

A simple and sensitive liquid chromatography/electrospray ionization tandem mass spectrometric (LC/ESI-MS/MS) method has been developed for the quantification of bioactive peptides in biological fluids. The method employs protein precipitation with 4% trichloroacetic acid (TCA) and selected reaction monitoring (SRM) using an immonium ion as the product ion. This method was applied to determine the synthetic parathyroid hormone (PTH) analog (MW 1721) in rat plasma and human hepcidin-25 (MW 2789) in human serum.

View Article and Find Full Text PDF

A novel method for proving the time course of the unfolding and refolding processes of metalloprotein bovine carbonic anhydrase 2 (CA2) is demonstrated using electrospray ionization mass spectrometry (ESI MS) combined with pH jumps between 3.6 and 4.4.

View Article and Find Full Text PDF

A specific and sensitive liquid chromatography-electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) method has been developed for the determination of 1alpha-hydroxyvitamin D(3) (1alphaOHD(3)) in rat plasma. A new ferrocene-based Cookson-type reagent, 4-ferrocenylmethyl-1,2,4-triazoline-3,5-dione (FMTAD), designed and synthesized to be highly sensitive to vitamin D analogs in ESI, considerably improved the detection limit with 250 fg (359 amol)/injection. 1alphaOHD(3) in rat plasma was extracted with acetonitrile and then purified using Oasis HLB 96-well plates.

View Article and Find Full Text PDF

A liquid chromatography-electrospray ionization tandem mass spectrometric (LC/ESI-MS/MS) method for the determination of 2beta-(3-hydroxypropoxy)-1alpha,25-dihydroxy vitamin D3 (ED-71) in human serum has been developed. ED-71 in human serum was extracted using two solid-phase extraction steps on Bond Elut C18 and NH2 cartridge. The separation of ED-71 and preED-71 isomer was attained by LC using 2 mmol/L ammonium acetate-methanol (15:85, v/v) as a mobile phase on a Symmetry C18 column (5 microm, 150 mm x 2.

View Article and Find Full Text PDF