In this study, we demonstrate a polarization imaging camera with a waveplate array of a silica glass fabricated by femtosecond (fs) laser direct writing. To use a waveplate array of silica glass for polarization imaging, non-uniformity of the transmittance and retardance in the waveplates must be considered. Therefore, we used a general method of polarization analysis with system matrices determined experimentally for all the units in the waveplate array.
View Article and Find Full Text PDFLocal melting and modulation of elemental distributions can be induced inside a glass by focusing femtosecond (fs) laser pulses at high repetition rate (>100 kHz). Using only a single beam of fs laser pulses, the shape of the molten region is ellipsoidal, so the induced elemental distributions are often circular and elongate in the laser propagation direction. In this study, we show that the elongation of the fs laser-induced elemental distributions inside a soda-lime glass could be suppressed by parallel fsing of 250 kHz and 1 kHz fs laser pulses.
View Article and Find Full Text PDFThe spatial distributions of elements in a glass can be modulated by irradiation with high repetition rate femtosecond laser pulses. However, the shape of the distribution is restricted to being axially symmetric about the laser beam axis due to the isotropic diffusion of photo-thermal energy. In this study, we describe a method to control the shape of the elemental distribution more flexibly by simultaneous irradiation at multiple spots using a spatial light modulator.
View Article and Find Full Text PDFCrack formations inside a LiF single crystal after femtosecond laser irradiation at multiple points were investigated. In the case of sequential laser irradiation at three points, the propagations of some cracks were prevented by the dislocation bands generated by the previous laser irradiation. On the other hand, in the case of simultaneous laser irradiation at three points with a spatial light modulator, cracks in all the <100> directions from the photoexcited regions were generated clearly, but the length of one crack depended on the distribution of laser irradiation positions.
View Article and Find Full Text PDF