Concerns about the negative intergenerational effects of excessive fructose intake are being raised, with evidence suggesting that prenatal fructose intake increases susceptibility to metabolic and cognitive dysfunction later in life. In the present study, we hypothesized that prenatal and postnatal fructose intake acts synergistically to impact on hippocampus of adult offspring. Female Sprague-Dawley rats received distilled water or 20% high-fructose corn syrup (HFCS) solution in addition to standard chow throughout gestation and lactation.
View Article and Find Full Text PDFThere are concerns about the negative effects of fructose intake during pregnancy on the next generation. We have previously reported that offspring from dams fed with fructose during gestation and lactation demonstrate abnormal lipid metabolism in the liver. In this study, we aimed to elucidate the molecular mechanism of the effects of maternal high-fructose corn syrup (HFCS) consumption on offspring.
View Article and Find Full Text PDFFructose consumption is rising globally, but maternal high fructose intake might adversely affect offspring. Our previous report demonstrated that excess maternal fructose intake impairs hippocampal function in offspring, indicating that the hippocampi of offspring are highly sensitive to maternal fructose. Here, we examined the effect of maternal high fructose on mitochondrial physiology and uncoupling protein (UCP) expression.
View Article and Find Full Text PDFGlobal fructose consumption is on the rise; however, maternal high-fructose intake may have adverse effects on offspring. We previously demonstrated that excessive fructose intake by rat dams altered steroidogenic gene transcription in the hippocampus of offspring. Herein, we examined how maternal high-fructose intake influences the regulation of adrenal glucocorticoid levels in offspring.
View Article and Find Full Text PDFAims: Recent increases in fructose consumption have raised concerns regarding the potential adverse intergenerational effects, as maternal fructose intake may induce physiological dysfunction in offspring. However, no reports are available regarding the effect of excess maternal fructose on reproductive tissues such as the ovary. Notably, the maternal intrauterine environment has been demonstrated to affect ovarian development in the subsequent generation.
View Article and Find Full Text PDF