Aerogels, as three-dimensional porous materials, have attracted much attention in almost every field owing to their unique structural properties. Designing high-entropy alloy aerogels (HEAAs) to quinary and above remains an enormous challenge due to the different reduction potentials and nucleation/growth kinetics of different constituent metals. Herein, a novel and universal chelating co-reduction strategy to prepare HEAAs at room temperature in the water phase is proposed.
View Article and Find Full Text PDFThere are still great challenges to prepare high-efficiency Ru-based catalysts that are superior to Pt/C under acidic conditions, especially under high current conditions. In this work, a series of surfactant-free noble metal doped Ru/CNT (M-Ru/CNT, M = Pt, Rh, Pd, Ir, CNT stands for carbon nanotube) are prepared by microwave reduction method in 1 minute with ≈3-3.5 nm in size for the first time.
View Article and Find Full Text PDFDefect engineering has become one of the important considerations in today's electrocatalyst design. However, the vacancies in the ordered crystal structure (especially body-centered cubic (bcc) and the effect of ordered vacancies (OVs) on the electronic fabric have not been researched yet. In this work, we report the inaugural time of the generation of OVs in the bcc architecture and discuss the insight of the modulation system of the material and its part in the electrochemical N reduction reaction (NRR).
View Article and Find Full Text PDFAt present, it is still a great challenge to synthesize refractory Pt-based electrocatalysts with excellent active specific surface area, specific activity, and stability by a simple method. Here, a superfast and solvent-free microwave strategy is reported to synthesize refractory ultrafine (≈3 nm) Pt-lanthanide@Ketjen Black (PtM@KB, M = La, Gd, Tb, Er, Tm, and Yb) alloy with densely packed as efficient hydrogen evolution electrocatalysts in a domestic microwave oven for the first time. The optimized Pt La @KB delivers excellent hydrogen evolution reaction (HER) activity with a low overpotential of 38 mV (10 mA cm ) and a high TOF value of 44.
View Article and Find Full Text PDFAppl Biochem Biotechnol
August 2021
Amino-modified mesoporous silica (SBA-15-NH) was prepared by hydrothermal method, which is a kind of excellent carrier for enzyme immobilization. The structure of SBA-15 was characterized by SEM and FTIR, which proved that amino group was successfully attached to the surface of SBA-15. The carrier had good mesoporous structure proved by nitrogen adsorption and desorption test.
View Article and Find Full Text PDF