A diamond nitrogen-vacancy (NV) ensemble has been developed as a vector magnetometry platform for sensing external time-varying magnetic fields. However, due to the complexity of manipulating electron spins along different directions, a current vector NV magnetometer often needs a large amount of supporting equipment, preventing its applications in a compact circumstance. Here, we develop a hardware-level protocol to realize a multi-axis NV magnetometer using only a single channel of microwave generation and signal detection resources.
View Article and Find Full Text PDFA single nitrogen-vacancy (NV) center in a diamond can be used as a nanoscale sensor for magnetic field, electric field or nuclear spins. Due to its low photon detection efficiency, such sensing processes often take a long time, suffering from an electron spin resonance (ESR) frequency fluctuation induced by the time-varying thermal perturbations noise. Thus, suppressing the thermal noise is the fundamental way to enhance single-sensor performance, which is typically achieved by utilizing a thermal control protocol with a complicated and highly costly apparatus if a millikelvin-level stabilization is required.
View Article and Find Full Text PDFDetecting nuclear spins using single nitrogen-vacancy (NV) centers is of particular importance in nanoscale science and engineering but often suffers from the heating effect of microwave fields for spin manipulation, especially under high magnetic fields. Here, we realize an energy-efficient nanoscale nuclear-spin detection using a phase-modulation electron-nuclear double resonance scheme. The microwave field can be reduced to 1/250 of the previous requirements, and the corresponding power is over four orders lower.
View Article and Find Full Text PDFSequential weak measurements allow for the direct extraction of individual density-matrix elements, rather than relying on global reconstruction of the entire density matrix, which opens a new avenue for the characterization of quantum systems. Nevertheless, extending the sequential scheme to multiqudit quantum systems is challenging due to the requirement of multiple coupling processes for each qudit and the lack of appropriate precision evaluation. To address these issues, we propose a resource-efficient scheme (RES) that directly characterizes the density matrix of general multiqudit systems while optimizing measurements and establishing a feasible estimation analysis.
View Article and Find Full Text PDFIn recent years, the nitrogen-vacancy (NV) center in diamonds has been demonstrated to be a high-performance multiphysics sensor, where a lock-in amplifier (LIA) is often adopted to monitor photoluminescence changes around the resonance. It is rather complex when multiple resonant points are utilized to realize a vector or temperature-magnetic joint sensing. In this article, we present a novel scheme to realize multipoint lock-in detection with only a single-channel device.
View Article and Find Full Text PDFNoise-induced control imperfection is an important problem in applications of diamond-based nanoscale sensing, where measurement-based strategies are generally utilized to correct low-frequency noises in realtime. However, the spin-state readout requires a long time due to the low photon-detection efficiency. This inevitably introduces a delay in the noise-reduction process and limits its performance.
View Article and Find Full Text PDFNitrogen-vacancy (NV) centers in diamond are extremely promising solid-state spin quantum sensors for magnetic field in recent years. The rapid development of NV-ensemble magnetometry has put forward higher requirements for high-speed data acquisition, real-time signal processing and analyzing, etc. However, the existing commercial instruments are bulky and expensive, which brings extra complexity to the weak magnetic field detection experiment and hinders the practicality and miniaturization of NV-ensemble magnetometry.
View Article and Find Full Text PDFNitrogen-vacancy (NV) centers in diamond are suitable sensors of high-sensitivity magnetometry, which have attracted much interest in recent years. Here, we demonstrate sensitivity-enhanced ensemble magnetometry via adaptively complete transitions overlapping with a bias magnetic field equally projecting onto all existing NV orientations. Under such conditions, the spin transitions corresponding to different NV orientations are completely overlapped, which will bring about an obviously improved photoluminescence contrast.
View Article and Find Full Text PDFWe report a synchronized time tagger based on a field-programmable-gate-array chip for one- or two-dimensional quantum experiments that require precise single-photon detections. The time tagger has a 9.2 ps single-shot root-mean-square precision and is equipped with a 1 GB dynamic memory for data storage.
View Article and Find Full Text PDFWe report a mixed-signal data acquisition (DAQ) system for optically detected magnetic resonance (ODMR) of solid-state spins. This system is designed and implemented based on a field-programmable-gate-array chip assisted with high-speed peripherals. The ODMR experiments often require high-speed mixed-signal data acquisition and processing for general and specific tasks.
View Article and Find Full Text PDFWe report a new method to determine the orientation of individual nitrogen-vacancy (NV) centers in a bulk diamond and use them to realize a calibration-free vector magnetometer with nanoscale resolution. Optical vortex beam is used for optical excitation and scanning the NV center in a [111]-oriented diamond. The scanning fluorescence patterns of NV center with different orientations are completely different.
View Article and Find Full Text PDFThe fundamental principle of artificial intelligence is the ability of machines to learn from previous experience and do future work accordingly. In the age of big data, classical learning machines often require huge computational resources in many practical cases. Quantum machine learning algorithms, on the other hand, could be exponentially faster than their classical counterparts by utilizing quantum parallelism.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
October 2012
Quantum computers have been proved to be able to mimic quantum systems efficiently in polynomial time. Quantum chemistry problems, such as static molecular energy calculations and dynamical chemical reaction simulations, become very intractable on classical computers with scaling up of the system. Therefore, quantum simulation is a feasible and effective approach to tackle quantum chemistry problems.
View Article and Find Full Text PDFPhys Chem Chem Phys
July 2012
Quantum algorithms could be much faster than classical ones in solving the factoring problem. Adiabatic quantum computation for this is an alternative approach other than Shor's algorithm. Here we report an improved adiabatic factoring algorithm and its experimental realization to factor the number 143 on a liquid-crystal NMR quantum processor with dipole-dipole couplings.
View Article and Find Full Text PDFQuantum simulation can beat current classical computers with minimally a few tens of qubits. Here we report an experimental demonstration that a small nuclear-magnetic-resonance quantum simulator is already able to simulate the dynamics of a prototype laser-driven isomerization reaction using engineered quantum control pulses. The experimental results agree well with classical simulations.
View Article and Find Full Text PDFThe nitrogen-vacancy defect center (N-V center) is a promising candidate for quantum information processing due to the possibility of coherent manipulation of individual spins in the absence of the cryogenic requirement. We report a room-temperature implementation of the Deutsch-Jozsa algorithm by encoding both a qubit and an auxiliary state in the electron spin of a single N-V center. By thus exploiting the specific S=1 character of the spin system, we demonstrate how even scarce quantum resources can be used for test-bed experiments on the way towards a large-scale quantum computing architecture.
View Article and Find Full Text PDFIt is difficult to simulate quantum systems on classical computers, while quantum computers have been proved to be able to efficiently perform such kinds of simulations. We report an NMR implementation simulating the hydrogen molecule (H2) in a minimal basis to obtain its ground-state energy. Using an iterative NMR interferometer to measure the phase shift, we achieve a 45-bit estimation of the energy value.
View Article and Find Full Text PDFWe propose an adiabatic quantum algorithm capable of factorizing numbers, using fewer qubits than Shor's algorithm. We implement the algorithm in a NMR quantum information processor and experimentally factorize the number 21. In the range that our classical computer could simulate, the quantum adiabatic algorithm works well, providing evidence that the running time of this algorithm scales polynomially with the problem size.
View Article and Find Full Text PDF