Publications by authors named "Nanxuan Mei"

Increased use and production of engineered nanoparticles (NPs) lead to an elevated risk of their diffuse dispersion into the aquatic environment and increased concern on unknown effects induced by their release into the aquatic ecosystem. An improved understanding of the environmental transformation processes of NPs of various surface characteristics is hence imperative for risk assessment and management. This study presents results on effects of natural organic matter (NOM) on the environmental transformation and dissolution of metal and metal oxide NPs of different surface and solubility properties in synthetic freshwater (FW) with and without NOM.

View Article and Find Full Text PDF

Pure metallic Co, Ni, and their bimetallic compositions of CoNi, CoNi, and CoNi nanomaterials were prepared by solution combustion synthesis. Microstructure, phase composition, and crystalline structure of these nanoparticles (NPs) were characterized along with studies of their corrosion and dissolution properties in synthetic freshwater with and without natural organic matter (NOM). The nanomaterials consisted of aggregates of fine NPs (3-30 nm) of almost pure metallic and bimetallic crystal phases with a thin surface oxide covered by a thin carbon shell.

View Article and Find Full Text PDF

Cobalt (Co) nanoparticles (NPs) are produced in different applications and unintentionally generated at several occupational and traffic settings. Their diffuse dispersion may lead to interactions with humans and aquatic organisms via different exposure routes that include their transformation/dissolution in biological media. This paper has investigated the particle stability and reactivity of Co NPs (dispersed by sonication prior to exposure) interacting with selected individual biomolecules (amino acids, polypeptides, and proteins) in phosphate-buffered saline (PBS).

View Article and Find Full Text PDF

Studded tyres made of tungsten carbide cobalt (WC-Co) are in the Northern countries commonly used during the winter time. Tungsten (W)-containing nano- and micron-sized particles have been detected close to busy roads in several European countries. Other typical traffic wear particles consist of copper (Cu).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session4d3b5i0eaul5jbfctrs6n3j7eshn8ivg): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once