Proliferating tumor cells take up glutamine for anabolic processes, engendering glutamine deficiency in the tumor microenvironment. How this might impact immune cells is not well understood. Using multiple mouse models of soft tissue sarcomas, glutamine antagonists, as well as genetic and pharmacological inhibition of glutamine utilization, we found that the number and frequency of conventional dendritic cells (cDCs) is dependent on microenvironmental glutamine levels.
View Article and Find Full Text PDFUnlabelled: Proliferating tumor cells take up glutamine for anabolic processes engendering glutamine deficiency in the tumor microenvironment. How this might impact immune cells is not well understood. Using multiple mouse models of soft tissue sarcomas, glutamine antagonists, as well as genetic and pharmacological inhibition of glutamine utilization, we found that the number and frequency of conventional dendritic cells (cDC) is dependent on microenvironmental glutamine levels.
View Article and Find Full Text PDFInterleukin-34 (IL-34) has been known as a factor that is involved with tumor progression and therapeutic resistance. However, there are limitations to addressing the mechanism of how IL-34 induces therapeutic resistance. Here, we show a mechanism of IL-34-induced resistance against cytotoxic anti-cancer therapies such as radiotherapy using X-ray and chemotherapy by Oxaliplatin.
View Article and Find Full Text PDFInterleukin-34 (IL-34) is an alternative ligand to colony-stimulating factor-1 (CSF-1) for the CSF-1 receptor that acts as a key regulator of monocyte/macrophage lineage. In this study, we show that tumor-derived IL-34 mediates resistance to immune checkpoint blockade regardless of CSF-1 existence in various murine cancer models. Consistent with its immunosuppressive characteristics, the expression of IL-34 in tumors correlates with decreased frequencies of cellular (such as CD8 and CD4 T cells and M1-biased macrophages) and molecular (including various cytokines and chemokines) effectors at the tumor microenvironment.
View Article and Find Full Text PDFBackground: Interleukin (IL)-34 acts as an alternative ligand for the colony-stimulating factor-1 receptor and controls the biology of myeloid cells, including survival, proliferation, and differentiation. IL-34 has been reported to be expressed in cancer cells and to promote tumor progression and metastasis of certain cancers via the promotion of angiogenesis and immunosuppressive macrophage differentiation. We have shown in our previous reports that targeting IL-34 in chemo-resistant tumors in vitro resulted in a remarkable inhibition of tumor growth.
View Article and Find Full Text PDFThe mortality of colorectal cancer is expected to increase in some countries including the United States, which necessitates the identification of new molecules that help in prognosis assessment and survival improvement. In this brief report, we evaluated the potential of interleukin-34 (IL-34) as a prognostic factor in colorectal cancer. IL-34 was reported for the first time in 2008 as a novel cytokine that controls the biology of the myeloid cell lineage.
View Article and Find Full Text PDFIL-34 is a novel cytokine that was identified in 2008 in a comprehensive proteomic analysis as a tissue-specific ligand of CSF-1 receptor (CSF-1R). IL-34 exists in all vertebrates including fish, amphibians, birds, and mammals, showing high conservation among species. Structurally, IL-34 belongs to the short-chain helical hematopoietic cytokine family but shows no apparent consensus structural domains, motifs, or sequence homology with other cytokines.
View Article and Find Full Text PDFBackground: Immunotherapies that target immune-checkpoint molecules such PD-1 have helped to achieve durable responses in melanoma treatment. However, 25% of melanoma patients who showed objective responses to PD-1 blockade develop resistance and suffer from disease progression and ultimately death, which necessitates the identification of related resistance mechanisms.IL-34 is a cytokine that controls the biology of myeloid cell lineage through binding to CSF-1R.
View Article and Find Full Text PDFThe ability of tumor cells to escape immune destruction and their acquired resistance to chemotherapy are major obstacles to effective cancer therapy. Although immune checkpoint therapies such as anti-PD-1 address these issues in part, clinical responses remain limited to a subpopulation of patients. In this report, we identified IL34 produced by cancer cells as a driver of chemoresistance.
View Article and Find Full Text PDF