The elastic-plastic Richtmyer-Meshkov instability of multiple interfaces is investigated by numerical simulation using a multimaterial solid mechanics algorithm based on an Eulerian framework. This Richtmyer-Meshkov instability problem is realized by a copper layer that is flanked by vacuum and a copper block of different material strength. The research efforts are directed to reveal the influence of the layer thickness and material strength on the deformation of the perturbed solid-vacuum interface impacted by an initial shock.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
March 2023
This retrospective aims to present a coherent history of important findings in direct numerical simulations and experiments in turbulent Taylor-Couette (TC) flow of dilute polymeric solutions in the last decade. Specifically, the sequence of flow transitions due to a continuous increase of fluid elasticity from classical Newtonian, to inertially and in turn to elastically dominated, and finally to the inertialess purely elastic turbulence, is presented. In each elastically modified flow state, the drag modification, coherent flow structures, velocity and elastic stress statistics, mechanism of turbulent kinetic energy production, spectral features as well as the self-sustaining cycles of turbulence, are discussed.
View Article and Find Full Text PDFThe nonlinear evolution of mixing layer in cylindrical Rayleigh-Taylor (RT) turbulence is studied theoretically and numerically. The scaling laws including the hyperbolic cosine growth for outward mixing layer and the cosine growth for inward mixing layer of the cylindrical RT turbulence are proposed for the first time and verified reliably by direct numerical simulation of the Navier-Stokes equations. It is identified that the scaling laws for the cylindrical RT turbulence transcend the classical power law for the planar RT turbulence and can be recovered to the quadratic growth as cylindrical geometry effect vanishes.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
June 2014
We report for the first time the polymer-induced breakdown of large-scale Taylor vortex structures leading to drag enhancement in viscoelastic turbulent Taylor-Couette flows. Specifically, we demonstrate that upon the addition of trace amounts of soluble high molecular weight macromolecules the Newtonian large-scale Taylor vortices are replaced by small-scale vortices in the inner and outer cylinder wall regions. This flow transition and a commensurate drag increase of up to 62% are facilitated by the presence of large polymeric normal stresses in a narrow region immediately close to the outer wall.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
May 2012
Flow over a traveling wavy foil with a passively flapping flat plate has been investigated using a multiblock lattice Boltzmann equation and the immersed boundary method. The foil undergoes prescribed undulations in the lateral direction and the rigid flat plate has passive motion determined by the fluid structure interaction. This simplified model is used to study the effect of the fish caudal fin and its flexibility on the locomotion of swimming animals.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
April 2009
We present the results of a numerical study of flow past an inclined flat plate and reveal a route of the transition from steady to chaotic flow. We find that the chaotic flow regime can be reached through the sequential occurrence of successive period-doubling bifurcations and various incommensurate bifurcations. The results provide physical insight into the understanding of fundamental flow behaviors underlying in this flow system and complement the transition phenomenon from steady to chaotic flow.
View Article and Find Full Text PDF