Publications by authors named "Nanrong Zeng"

Background: Chest X-rays (CXR) are widely used to facilitate the diagnosis and treatment of critically ill and emergency patients in clinical practice. Accurate hemi-diaphragm detection based on postero-anterior (P-A) CXR images is crucial for the diaphragm function assessment of critically ill and emergency patients to provide precision healthcare for these vulnerable populations.

Objective: Therefore, an effective and accurate hemi-diaphragm detection method for P-A CXR images is urgently developed to assess these vulnerable populations' diaphragm function.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) is a widely prevalent disease with significant mortality and disability rates and has become the third leading cause of death globally. Patients with acute exacerbation of COPD (AECOPD) often substantially suffer deterioration and death. Therefore, COPD patients deserve special consideration regarding treatment in this fragile population for pre-clinical health management.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) is a common lung disease that can lead to restricted airflow and respiratory problems, causing a significant health, economic, and social burden. Detecting the COPD stage can provide a timely warning for prompt intervention in COPD patients. However, existing methods based on inspiratory (IN) and expiratory (EX) chest CT images are not sufficiently accurate and efficient in COPD stage detection.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) is closely related to the right ventricle and lung lobes. This study focuses on the segmentation of the right ventricle and lung lobes. We conducted experiments using the MMWHS and our lung lobe datasets and evaluated the segmentation using different training models.

View Article and Find Full Text PDF

Computed tomography (CT) has been regarded as the most effective modality for characterizing and quantifying chronic obstructive pulmonary disease (COPD). Therefore, chest CT images should provide more information for COPD diagnosis, such as COPD stage classification. This paper proposes a features combination strategy by concatenating three-dimension (3D) CNN features and lung radiomics features for COPD stage classification based on the multi-layer perceptron (MLP) classifier.

View Article and Find Full Text PDF

Introduction: Because of persistent airflow limitation in chronic obstructive pulmonary disease (COPD), patients with COPD often have complications of dyspnea. However, as a leading symptom of COPD, dyspnea in COPD deserves special consideration regarding treatment in this fragile population for pre-clinical health management in COPD. Methods: Based on the above, this paper proposes a multi-modal data combination strategy by combining the local and global features for dyspnea identification in COPD based on the multi-layer perceptron (MLP) classifier.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) is a preventable, treatable, progressive chronic disease characterized by persistent airflow limitation. Patients with COPD deserve special consideration regarding treatment in this fragile population for preclinical health management. Therefore, this paper proposes a novel lung radiomics combination vector generated by a generalized linear model (GLM) and Lasso algorithm for COPD stage classification based on an auto-metric graph neural network (AMGNN) with a meta-learning strategy.

View Article and Find Full Text PDF

Computed tomography (CT) has been the most effective modality for characterizing and quantifying chronic obstructive pulmonary disease (COPD). Radiomics features extracted from the region of interest in chest CT images have been widely used for lung diseases, but they have not yet been extensively investigated for COPD. Therefore, it is necessary to understand COPD from the lung radiomics features and apply them for COPD diagnostic applications, such as COPD stage classification.

View Article and Find Full Text PDF

Background: Chronic obstructive pulmonary disease (COPD), a preventable lung disease, has the highest prevalence in the elderly and deserves special consideration regarding earlier warnings in this fragile population. The impact of age on COPD is well known, but the COPD risk of the aging process in the lungs remains unclear. Therefore, it is necessary to understand the COPD risk of the aging process in the lungs, providing an early COPD risk decision for adults.

View Article and Find Full Text PDF