The absorption spectra of the C(2A2) <-- X(2B1) transition of the OBrO molecule are calculated using three-dimensional time-dependent wave-packet method in Radau coordinates for a total angular momentum J=0. The wave packet is propagated using the split operator technique associated with fast Fourier transform. Employing the basis functions obtained by one-dimensional Fourier grid Hamiltonian method, the initial wave packet is calculated directly on the three-dimensional Fourier grid.
View Article and Find Full Text PDFTime-dependent wave packet calculations of the (A (2)A(2)<--X (2)B(1)) absorption and Raman spectra of the OClO molecule are reported. The Fourier grid Hamiltonian method in three dimensions is employed. The X (2)B(1) ground state ab initio potential energy surface reported by Peterson is used together with his corresponding A (2)A(2) state surface or the revised surface of the A (2)A(2) state by Xie and Guo.
View Article and Find Full Text PDFWe report for the first time the proper conditions to observe Autler-Townes splitting (ac-Stark splitting) from vibrationally coherent states belonging to the different electronic terms of a diatomic molecule. Wave packet dynamics simulations demonstrate that such a process is feasible by multiphoton resonance ionization of the molecule Na2 with a single ultrashort intense laser pulse. With the ultrahigh time resolution of a femtosecond laser pulse, one can directly measure the absolute value of the transition dipole moment between any kinds of molecular states by this kind of Autler-Townes splitting, which is a function of the internuclear distance R.
View Article and Find Full Text PDF