Plumage color is an important economic trait for breed feature identification and consumer's requirements in pigeons. The domestic pigeon has multiple types of plumage color, thereby providing a unique opportunity to identify the genetic basis of plumage coloration. White feather color is common for meat and medicinal use.
View Article and Find Full Text PDFVan der Waals (vdW) ferroelectrics have attracted significant attention for their potential in next-generation nano-electronics. Two-dimensional (2D) group-IV monochalcogenides have emerged as a promising candidate due to their strong room temperature in-plane polarization down to a monolayer limit. However, their polarization is strongly coupled with the lattice strain and stacking orders, which impact their electronic properties.
View Article and Find Full Text PDFThin ferroelectric materials hold great promise for compact nonvolatile memory and nonlinear optical and optoelectronic devices. Herein, an ultrathin in-plane ferroelectric material that exhibits a giant nonlinear optical effect, group-IV monochalcogenide SnSe, is reported. Nanometer-scale ferroelectric domains with ≈90°/270° twin boundaries or ≈180° domain walls are revealed in physical-vapor-deposited SnSe by lateral piezoresponse force microscopy.
View Article and Find Full Text PDFTailoring of the propagation dynamics of exciton-polaritons in two-dimensional quantum materials has shown extraordinary promise to enable nanoscale control of electromagnetic fields. Varying permittivities along crystal directions within layers of material systems, can lead to an in-plane anisotropic dispersion of polaritons. Exploiting this physics as a control strategy for manipulating the directional propagation of the polaritons is desired and remains elusive.
View Article and Find Full Text PDFThe group-10 noble-metal dichalcogenides have recently emerged as a promising group of two-dimensional materials due to their unique crystal structures and fascinating physical properties. In this work, the resonance enhancement of the interlayer breathing mode (B1) and intralayer A and A modes in atomically thin pentagonal PdSe were studied using angle-resolved polarized Raman spectroscopy with 13 excitation wavelengths. Under the excitation energies of 2.
View Article and Find Full Text PDF2D transition metal dichalcogenides (TMDCs) with intense and tunable photoluminescence (PL) have opened up new opportunities for optoelectronic and photonic applications such as light-emitting diodes, photodetectors, and single-photon emitters. Among the standard characterization tools for 2D materials, Raman spectroscopy stands out as a fast and non-destructive technique capable of probing material's crystallinity and perturbations such as doping and strain. However, a comprehensive understanding of the correlation between photoluminescence and Raman spectra in monolayer MoS remains elusive due to its highly nonlinear nature.
View Article and Find Full Text PDFThe large-area synthesis of high-quality MoS plays an important role in realizing industrial applications of optoelectronics, nanoelectronics, and flexible devices. However, current techniques for chemical vapor deposition (CVD)-grown MoS require a high synthetic temperature and a transfer process, which limits its utilization in device fabrications. Here, the direct synthesis of high-quality monolayer MoS with the domain size up to 120 µm by metal-organic CVD (MOCVD) at a temperature of 320 °C is reported.
View Article and Find Full Text PDFAchieving large-size two-dimensional (2D) crystals is key to fully exploiting their remarkable functionalities and application potentials. Chemical vapor deposition growth of 2D semiconductors such as monolayer MoS has been reported to be activated by halide salts, for which various investigations have been conducted to understand the underlying mechanism from different aspects. Here, we provide experimental evidence showing that the MoS growth dynamics are halogen dependent through the Brønsted-Evans-Polanyi relation, based on which we build a growth model by considering MoS edge passivation by halogens, and theoretically reproduce the trend of our experimental observations.
View Article and Find Full Text PDFRaman spectroscopy is a fast and nondestructive characterization technique, which has been widely used for the characterization of the composition and structure information of various materials. The symmetry-dependent Raman tensor allows the detection of crystallographic orientation of materials by using polarization information. In this Perspective, we discuss polarized Raman spectroscopy as a powerful tool for determination of the crystallographic orientation of various materials.
View Article and Find Full Text PDFThe strength of interlayer coupling critically affects the physical properties of 2D materials such as black phosphorus (BP), where the electronic structure depends sensitively on layer thickness. Rigid-layer vibrations reflect directly the interlayer coupling strength in 2D van der Waals solids, but measurement of these characteristic frequencies is made difficult by sample instability and small Raman scattering cross sections in atomically thin elemental crystals. Here, we overcome these challenges in BP by performing resonance-enhanced low-frequency Raman scattering under an argon-protective environment.
View Article and Find Full Text PDFAdvanced beyond-silicon electronic technology requires both channel materials and also ultralow-resistance contacts to be discovered. Atomically thin two-dimensional semiconductors have great potential for realizing high-performance electronic devices. However, owing to metal-induced gap states (MIGS), energy barriers at the metal-semiconductor interface-which fundamentally lead to high contact resistance and poor current-delivery capability-have constrained the improvement of two-dimensional semiconductor transistors so far.
View Article and Find Full Text PDFDue to strong interlayer interaction and ease of oxidation issues of black phosphorus (BP), the domain size of artificial synthesized few-layer black phosphorus (FL-BP) crystals is often below 10 µm, which extremely limits its further applications in large-area thin-film devices and integrated circuits. Herein, a hydrogen-free electrochemical delamination strategy through weak Lewis acid intercalation enabled exfoliation is developed to produce ultralarge FL-BP single-crystalline domains with high quality. The interaction between the weak Lewis acid tetra-n-butylammonium acetate (CH COOTBA) and P atoms promotes the average domain size of FL-BP crystal up to 77.
View Article and Find Full Text PDFThe constituent particles of matter can arrange themselves in various ways, giving rise to emergent phenomena that can be surprisingly rich and often cannot be understood by studying only the individual constituents. Discovering and understanding the emergence of such phenomena in quantum materials-especially those in which multiple degrees of freedom or energy scales are delicately balanced-is of fundamental interest to condensed-matter research. Here we report on the surprising observation of emergent ferroelectricity in graphene-based moiré heterostructures.
View Article and Find Full Text PDFAdvanced microscopy and/or spectroscopy tools play indispensable roles in nanoscience and nanotechnology research, as they provide rich information about material processes and properties. However, the interpretation of imaging data heavily relies on the "intuition" of experienced researchers. As a result, many of the deep graphical features obtained through these tools are often unused because of difficulties in processing the data and finding the correlations.
View Article and Find Full Text PDFElectron-phonon coupling in two-dimensional nanomaterials plays a fundamental role in determining their physical properties. Such interplay is particularly intriguing in semiconducting black phosphorus (BP) due to the highly anisotropic nature of its electronic structure and phonon dispersions. Here we report the direct observation of symmetry-dependent electron-phonon coupling in BP by performing the polarization-selective resonance Raman measurement in the visible and ultraviolet regimes, focusing on the out-of-plane A and in-plane A phonon modes.
View Article and Find Full Text PDFThe massless Dirac electron transport in graphene has led to a variety of unique light-matter interaction phenomena, which promise many novel optoelectronic applications. Most of the effects are only accessible by breaking the spatial symmetry, through introducing edges, p-n junctions, or heterogeneous interfaces. The recent development of direct synthesis of lateral heterostructures offers new opportunities to achieve the desired asymmetry.
View Article and Find Full Text PDFSince the discovery of graphene-enhanced Raman scattering in 2010, other 2D materials have been reported to show a Raman enhancement effect on molecules adsorbed on their surfaces. The mechanism for this phenomenon, however, still remains elusive. Here we performed a comparative investigation of the Raman enhancement effect on nine 2D materials with an identical number of copper phthalocyanine (CuPc) as probe molecules.
View Article and Find Full Text PDFLateral heterostructures with planar integrity form the basis of two-dimensional (2D) electronics and optoelectronics. Here we report that, through a two-step chemical vapor deposition (CVD) process, high-quality lateral heterostructures can be constructed between metallic and semiconducting transition metal disulfide (TMD) layers. Instead of edge epitaxy, polycrystalline monolayer MoS in such junctions was revealed to nucleate from the vertices of multilayered VS crystals, creating one-dimensional junctions with ultralow contact resistance (0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2018
Semimetallic-layered transition-metal dichalcogenides, such as TiS, can serve as a platform material for exploring novel physics modulated by dimensionality, as well as for developing versatile applications in electronics and thermoelectrics. However, controlled synthesis of ultrathin TiS in a dry-chemistry way has yet to be realized because of the high oxophilicity of active Ti precursors. Here, we report the ambient pressure chemical vapor deposition (CVD) method to grow large-size, highly crystalline two-dimensional (2D) TiS nanosheets through in situ generating titanium chloride as the gaseous precursor.
View Article and Find Full Text PDFBlack phosphorus (BP), a layered material with puckered crystalline structure in each layer, has drawn intense interest due to its unique optical and electronic properties. In particular, the intricate Raman scattering effect in BP is intriguing and provides a platform for researchers to probe the physical properties of BP in depth. Here we report the first observation of anomalous modes with the frequency in the range of 100-900 cm in BP due to the resonant Raman effect.
View Article and Find Full Text PDFThe Raman tensor of a crystal is the derivative of its polarizability tensor and is dependent on the symmetries of the crystal and the Raman-active vibrational mode. The intensity of a particular mode is determined by the Raman selection rule, which involves the Raman tensor and the polarization configurations. For anisotropic two-dimensional (2D) layered crystals, polarized Raman scattering has been used to reveal the crystalline orientations.
View Article and Find Full Text PDFIdentification of the crystalline axis of anisotropic black phosphorus (BP) is important for investigating its physical properties, as well as for optical and electronic applications. Herein, it is showed that by applying in-plane uniaxial strain and measuring the changes of the Raman shifts, the crystalline axis of BP can be reliably determined. The strain effects on the Raman shifts are angle-dependent, and they can be expressed as a combination of the Raman responses under zigzag and armchair strain.
View Article and Find Full Text PDFBy utilizing well-designed bifunctional ligands derived from 1H-imidazole-4,5-dicarboxylic acid, magnetic coordination polymers (CPs) that exhibit slow magnetic relaxation at the low temperature regions were constructed and further structurally characterized. In 1, 1D cobalt-carboxyl chains were stabilized in the final structure. In contrast, by adjusting the length of the substituted arms on imidazole-4,5-dicarboxylic acid, a novel 3D CP, 2 containing 2D 6 cobalt-carboxyl layer was obtained.
View Article and Find Full Text PDFAs an anisotropic 2D layered material, rhenium disulfide (ReS) has attracted much attention because of its unusual properties and promising applications in electronic and optoelectronic devices. However, the low lattice symmetry and interlayer decoupling of ReS make asymmetric growth and out-of-plane growth occur quite easily; therefore, thick flake, dendritic and flower-like structures of ReS have mostly been obtained previously. Here, we report on an approach based on space-confined epitaxial growth for the controlled synthesis of ReS films.
View Article and Find Full Text PDF