Publications by authors named "Nanna S Sarvilinna"

Background: Uterine leiomyomas can be classified into molecularly distinct subtypes according to their genetic triggers: MED12 mutations, HMGA2 upregulation, or inactivation of FH. The aim of this study was to identify metabolites and metabolic pathways that are dysregulated in different subtypes of leiomyomas.

Methods: We performed global metabolomic profiling of 25 uterine leiomyomas and 17 corresponding myometrium specimens using liquid chromatography-tandem mass spectroscopy.

View Article and Find Full Text PDF

Objective: To determine the frequency of mediator complex subunit 12 (MED12) mutations in well-documented, prospectively collected, unselected series of sporadic uterine leiomyomas to better understand the contribution of MED12 mutations in leiomyoma genesis.

Design: Mutation analysis of two prospectively collected sample series.

Setting: Department of gynecology in university hospital and medical genetics research laboratory.

View Article and Find Full Text PDF

Elevated activator protein-1 (AP-1) activity in breast cancer cells has been linked to Tamoxifen (TAM) resistance. Fos-like antigen-1 (FOSL1) is a member of the AP-1 transcription factor and is overexpressed in a variety of human cancers including breast tumors. We have previously established an estrogen-independent and antiestrogen Toremifene (TOR)-resistant subline of MCF-7 breast cancer cells.

View Article and Find Full Text PDF

We have established estrogen-independent and antiestrogen-resistant cell lines from hormone-dependent MCF-7 breast cancer cells by long-term culture in the absence of estrogen, or in the presence of antiestrogen toremifene, respectively. By using a cDNA microarray we compared gene expression profiles among estrogen-independent, antiestrogen-resistant and long-term estrogen-treated MCF-7 cells. We also determined how the expression of the differentially expressed genes has developed during the long-term culture of the cell lines.

View Article and Find Full Text PDF

Estrogen stimulates proliferation in hormone-responsive breast cancer cells. Progestins inhibit the estrogen-mediated growth in these cells and are used in the treatment of mammary carcinomas. We applied cDNA microarray and real-time RT-PCR methods to reveal 17beta-estradiol- and medroxyprogesterone acetate (MPA)-regulated genes in MCF-7 breast cancer cells.

View Article and Find Full Text PDF