The impact of substituents at the 4- and 7-positions of 1,10-phenanthroline-2,9-dicarboxamides on the photophysical properties of the ligands and their coordination compounds with the lanthanide triad-europium, gadolinium, and terbium-was analyzed. This study demonstrates how modification of the electronic nature of ligands through the incorporation of diverse functional groups affects the luminescence properties of their complexes. The introduction of various substituents leads to the appearance of intra-ligand or ligand-to-ligand charge transfer (CT) states.
View Article and Find Full Text PDFA new family of phenanthroline ligands was prepared. Hydrolysis of 4,7-dihalogenated 1,10-phenanthroline-2,9-diamides in acidic media leads to the formation of the corresponding 4,7-oxygenated derivatives. These ligands can exist in different tautomeric forms.
View Article and Find Full Text PDFA highly efficient synthetic approach was developed for the synthesis of unsymmetrical 1,10-phenanthroline-2,9-diamides with two different substituents in the fourth and seventh positions of the phenanthroline core. The structures of these ligands were confirmed using various spectral methods including 2D-NMR and X-ray analysis. Quantum chemical calculations supported the presence of tautomeric forms of these ligands.
View Article and Find Full Text PDFThree pyrrolidine-derived phenanthroline diamides were studied as ligands for lutetium trinitrate. The structural features of the complexes have been studied using various spectral methods and X-ray. The presence of halogen atoms in the structure of phenanthroline ligands has a significant impact on both the coordination number of lutetium and the number of solvate water molecules in the internal coordination sphere.
View Article and Find Full Text PDFPhenanthroline diamides () demonstrated a unique ability to extract uranium from nitric acid solutions into a polar organic solvent forming complexes of 1:2 stoichiometry as tight ion pairs {[UONO][UO(NO)]} by a novel extraction mechanism, which is a combination of two already well-known mechanisms: solvation and ion-pair anion exchange. A UV-vis study was used to confirm the formation of such complexes directly in the organic phase. Moreover, chemical synthesis and single crystal growth were performed to confirm unambiguously the structure of the complexes in the solid state.
View Article and Find Full Text PDFAn efficient approach to the synthesis of diamides of 4,7-difluoro-1,10-phenanthroline-2,9-dicarboxylic acid was elaborated. Direct nucleophilic substitution with 4,7-dichloro-1,10-phenanthroline precursors opened access to difluoro derivatives in high yield. As a result, four new fluorinated ligands were prepared in up to 88% yield.
View Article and Find Full Text PDFThe first examples of 1,10-phenanthroline-2,9-diamides bearing CF-groups on the side amide substituents were synthesized. Due to stereoisomerism and amide rotation, such complexes have complicated behavior in solutions. Using advanced NMR techniques and X-ray analysis, their structures were completely elucidated.
View Article and Find Full Text PDF