Urine is a widely available renewable source of nitrogen and phosphorous. The nitrogen in urine is present in the form of urea, which is rapidly hydrolyzed to ammonia and carbonic acid by the urease enzymes occurring in nature. In order to efficiently recover urea, the inhibition of urease must be done, usually by increasing the pH value above 11.
View Article and Find Full Text PDFThe increasing demand for nanofiltration processes in drinking water treatment, industrial separation and wastewater treatment processes has highlighted several shortcomings of current state-of-the-art thin film composite (TFC NF) membranes, including limitations in chemical resistance, fouling resistance and selectivity. Polyelectrolyte multilayer (PEM) membranes provide a viable, industrially applicable alternative, providing significant improvements in these limitations. Laboratory experiments using artificial feedwaters have demonstrated selectivity an order of magnitude higher than polyamide NF, significantly higher fouling resistance and excellent chemical resistance (e.
View Article and Find Full Text PDFMembrane-based beverage dealcoholization is a successful process for producing low- and non-alcoholic beer and represents a fast-growing industry. Polyamide NF and RO membranes are commonly applied for this process. Polyelectrolyte multilayer (PEM) NF membranes are emerging as industrially relevant species, and their unique properties (usually hollow fiber geometry, high and tunable selectivity, low fouling) underlines the importance of testing them in the food industry as well.
View Article and Find Full Text PDFIn this work, a novel cation exchange membrane, PSEBS SU22 was deployed in microbial fuel cells (MFCs) to examine system efficacy in line with membrane characteristics and inoculum source. It turned out that compared to a reference membrane (Nafion), employing PSEBS SU22 resulted in higher current density and electricity generation kinetics, while the electron recoveries were similar (19-28%). These outcomes indicated more beneficial ion transfer features and lower mass transfer-related losses in the PSEBS SU22-MFCs, supported by membrane water uptake, ion exchange capacity, ionic conductivity and permselectivity.
View Article and Find Full Text PDFThis work characterizes and comparatively assess two cation exchange membranes (PSEBS SU22 and CF22 R14) and one bipolar membrane (FBM) in microbial electrolysis cells (MEC), fed either by acetate or the mixture of volatile fatty acids as substrates. The PSEBS SU22 is a new, patent-pending material, while the CF22 R14 and FBM are developmental and commercialized products. Based on the various MEC performance measures, membranes were ranked by the EXPROM-2 method to reveal which of the polymeric membranes could be more beneficial from a complex, H production efficiency viewpoint.
View Article and Find Full Text PDFEffluents of anaerobic processes still contain valuable components, among which volatile fatty acids (VFAs) can be regarded and should be recovered and/or used further in applications such as microbial electrochemical technology to generate energy/energy carriers. To accomplish the separation of VFAs from waste liquors, various membrane-based solutions applying different transport mechanisms and traits are available, including pressure-driven nanofiltration (NF) and reverse osmosis (RO) which are capable to clarify, fractionate and concentrate salts and organics. Besides, emerging techniques using a membrane such as forward osmosis (FO) and supported liquid membrane (SILM) technology can be taken into consideration for VFA separation.
View Article and Find Full Text PDFIn this work, two commercialized anion-exchange membranes (AEMs), AMI-7001 and AF49R27, were applied in microbial electrolysis cells (MECs) and compared with a novel AEM (PSEBS CM DBC, functionalized with 1,4-diazabicyclo[2.2.2]octane) to produce biohydrogen.
View Article and Find Full Text PDFBiohydrogen production via dark fermentation is currently the most developed method considering its practical readiness for scale-up. However, technological issues to be resolved are still identifiable and should be of concern, particularly in terms of internal mass transfer. If sufficient liquid-to-gas H mass transfer rates are not ensured, serious problems associated with the recovery of biohydrogen and consequent inhibition of the process can occur.
View Article and Find Full Text PDFThe effects of the bioreactor conditions, in particular the mode and intensity of aeration and mixing were studied on itaconic acid (IA) fermentation efficiency by Aspergillus terreus strain from glucose substrate. IA was produced in batch system by systematically varying the oxygen content of the aeration gas (from 21 to 31.5 vol% O) and the stirring rate (from 150 to 600 rpm).
View Article and Find Full Text PDFThe scope of the review is to discuss the current state of knowledge and lessons learned on biofouling of membrane separators being used for microbial electrochemical technologies (MET). It is illustrated what crucial membrane features have to be considered and how these affect the MET performance, paying particular attention to membrane biofouling. The complexity of the phenomena was demonstrated and thereby, it is shown that membrane qualities related to its surface and inherent material features significantly influence (and can be influenced by) the biofouling process.
View Article and Find Full Text PDFIn this study, microbial fuel cells (MFCs) - operated with novel cation- and anion-exchange membranes, in particular AN-VPA 60 (CEM) and PSEBS DABCO (AEM) - were assessed comparatively with Nafion proton exchange membrane (PEM). The process characterization involved versatile electrochemical (polarization, electrochemical impedance spectroscopy - EIS, cyclic voltammetry - CV) and biological (microbial structure analysis) methods in order to reveal the influence of membrane-type during start-up. In fact, the use of AEM led to 2-5 times higher energy yields than CEM and PEM and the lowest MFC internal resistance (148 ± 17 Ω) by the end of start-up.
View Article and Find Full Text PDFBiotechnol Rep (Amst)
March 2019
Industrially, harvesting of the microalgal biomass is a techno-economic tailback, which essentially meant for the algal biomass industry. It is considered energy as well as cost-intensive in view of the fact that the dewatering process during harvesting. In this review chemical reactions involved in the flocculation of microalage biomass various certain principal organic polymers are focused.
View Article and Find Full Text PDFThis review article focuses on an assessment of the innovative Gas Separation Membrane Bioreactor (GS-MBR), which is an emerging technology because of its potential for in-situ biohydrogen production and separation. The GS-MBR, as a special membrane bioreactor, enriches CO directly from the headspace of the anaerobic H fermentation process. CO can be fed as a substrate to auxiliary photo-bioreactors to grow microalgae as a promising raw material for biocatalyzed, dark fermentative H-evolution.
View Article and Find Full Text PDF(Red, green and brown) macroalgal biomass is a propitious candidate towards covenant alternative energy resources to be converted into biofuels i.e. hydrogen.
View Article and Find Full Text PDF