This study investigated the possible influence of the Subdural Pharmacotherapy Device (SPD) on spatial memory in 3 adult, male bonnet macaques (Macaca radiata). The device was implanted in and above the subdural/subarachnoid space and cranium overlaying the right parietal/frontal cortex: a circuitry involved in spatial memory processing. A large test chamber, equipped with four baited and four non-baited food-ports at different locations, was used: reaches into empty food ports were counted as spatial memory errors.
View Article and Find Full Text PDFWe postulate that alternating use of microcontroller-regulated delivery and drain pumps connected to one or more sealed subarachnoid fluid exchange ports can maintain localized bi-directional molecular fluxes across pia mater covering multiple diseased areas of the cerebral cortex or spinal cord. This system enables local irrigation with drugs and drainage of endogenous neurotoxic molecules normalizing regional neurochemistry and restoring physiological function. Viewing the pia mater as an endogenous dialysis membrane, testing this hypothesis requires demonstrating: (a) benefits of removing neurotoxic molecules from diseased cerebral cortical or spinal areas via subarachnoid dialysis, (b) neuropharmacological effects of subarachnoid drug delivery and (c) evaluating additive effects of combining the two, as a novel, "pharmacodialysis" procedure.
View Article and Find Full Text PDFObject: The authors evaluated the extent to which the Subdural Pharmacotherapy Device (SPD), chronically implanted over the frontal cortex to perform periodic, localized muscimol-delivery/CSF removal cycles, affects overall behavior, motor performance, electroencephalography (EEG) activity, and blood and CSF neurochemistry in macaque monkeys.
Methods: Two monkeys were used to adjust methodology and 4 monkeys were subjected to comprehensive testing. Prior to surgery, the animals' behavior in a large test chamber was monitored, and the motor skills required to remove food pellets from food ports located on the walls of the chamber were determined.
Electrophysiological and behavioral studies have demonstrated that muscimol administered through the cranial meninges can prevent focal neocortical seizures. It was proposed that transmeningeal muscimol delivery can be used for the treatment of intractable focal neocortical epilepsy. However, it has not been proved that muscimol administered via the transmeningeal route can penetrate into the neocortex.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
June 2012
TETS (Transcutaneous Energy Transfer System) has been successfully used for powering medical implants for different purposes such as for neural recordings and drug delivery. Yet, due to their low power transfer efficiency, these devices can cause unacceptable increase in skin temperature limiting their scalability to high power levels. Although, the efficiency of these systems can be improved by increasing coil diameter, in many cases this is not practical due to strict physical constraints on the coil diameter.
View Article and Find Full Text PDFTransmeningeal pharmacotherapy for cerebral cortical disorders requires drug delivery through the subdural/subarachnoid space, ideally with a feedback controlled mechanism. We have developed a device suitable for this function. The first novel component of the apparatus is a silicone rubber strip equipped with (a) fluid-exchange ports for both drug delivery and local cerebrospinal fluid (CSF) removal, and (b) EEG recording electrode contacts.
View Article and Find Full Text PDFPeriodic transmeningeal administration of muscimol into the neocortical epileptogenic zone via a subdurally implanted device has been proposed for the treatment of intractable focal neocortical epilepsy. It is unknown whether such muscimol applications induce tolerance. The purpose of this study was to determine whether daily transmeningeal (epidural) muscimol applications into the rat parietal cortex induce tolerance to the antiepileptic effect of this drug.
View Article and Find Full Text PDFMuscimol has potent antiepileptic efficacy after transmeningeal administration in animals. However, it is unknown whether this compound stops local neuronal firing at concentrations that prevent seizures. The purpose of this study was to test the hypothesis that epidurally administered muscimol can prevent acetylcholine (Ach)-induced focal seizures in the rat neocortex without causing cessation of multineuronal activity.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
April 2011
As new functionality is added to the implantable devices, their power requirements also increase. Such power requirements make it hard for keeping such implants operational for long periods by non-rechargeable batteries. This result in a need for frequent surgeries to replace these batteries.
View Article and Find Full Text PDFIntracranial pharmacotherapy is a novel strategy to treat drug refractory, localization-related epilepsies not amenable to resective surgery. The common feature of the method is the use of some type of antiepileptic drug (AED) delivery device placed inside the cranium to prevent or stop focal seizures. This distinguishes it from other nonconventional methods, such as intrathecal pharmacotherapy, electrical neurostimulation, gene therapy, cell transplantation, and local cooling.
View Article and Find Full Text PDFThis study compared the potencies of epidurally delivered muscimol, lidocaine, midazolam, pentobarbital and gamma-aminobutyric acid (GABA) to prevent focal neocortical seizures induced by locally applied acetylcholine (Ach), in rats (n=5). An epidural cup was chronically implanted over the right somatosensory cortex in each animal, with epidural EEG electrodes placed posterior to the edge of the cup. After recovery, either artificial cerebrospinal fluid (ACSF; control solution) or one of the five drugs was delivered into epidural cup, followed by Ach administration into the cup to induce seizures.
View Article and Find Full Text PDFPurpose: To determine whether muscimol delivered epidurally or into the subarachnoid space can prevent and/or terminate acetylcholine (Ach)-induced focal neocortical seizures at concentrations not affecting behavior and background electroencephalography (EEG) activity.
Methods: Rats (n = 12) and squirrel monkeys (n = 3) were chronically implanted with an epidural or subarachnoid drug delivery device, respectively, over the right frontal/parietal cortex, with adjacent EEG electrodes. Recordings were performed in behaving rats and chaired monkeys.
In standard experimental environments, a constant proportion of CA1 principal cells are place cells, each with a spatial receptive field called a place field. Although the properties of place cells are a basis for understanding the mammalian representation of spatial knowledge, there is no consensus on which of the two fundamental neural-coding hypotheses correctly accounts for how place cells encode spatial information. Within the dedicated-coding hypothesis, the current activity of each cell is an independent estimate of the location with respect to its place field.
View Article and Find Full Text PDFAntiepileptic drug (AED) delivery directly into the neocortex has recently been shown to be able to both prevent and terminate focal seizures in rats. The present clinical experiment aimed to test the local effects of lidocaine delivered onto the pia mater adjacent to epileptogenic zones in human patients. Administration of lidocaine resulted in a marked diminishment of spike counts on all patients, with a decremental effect of lidocaine on the faster frequency elements of individual spikes and overall testing epochs.
View Article and Find Full Text PDFTransmeningeal pharmacotherapy has been proposed to treat neurological disorders with localized pathology, such as intractable focal epilepsy. As a step toward understanding the diffusion and intracortical spread of transmeningeally delivered drugs, the present study used histological methods to determine the extent to which a marker compound, N-methyl-D-aspartate (NMDA), can diffuse into the neocortex through the meninges. Rats were implanted with bilateral parietal cortical epidural cups filled with 50 mM NMDA on the right side and artificial cerebrospinal fluid (ACSF) in the contralateral side.
View Article and Find Full Text PDFTransmeningeal drug delivery, using an implanted hybrid neuroprosthesis, has been proposed as a novel therapy for intractable focal epilepsy. As part of a systematic effort to identify the optimal compounds and protocols for such a therapy, this study aimed to determine whether transmeningeal gamma-aminobutyric acid (GABA) delivery can terminate and/or prevent neocortical seizures in rats. Rats were chronically implanted with an epidural cup and an adjacent EEG electrode in the right parietal cortex.
View Article and Find Full Text PDFPurpose: To determine whether epidural pentobarbital (PB) delivery can prevent and/or terminate neocortical seizures induced by locally administered acetylcholine (Ach) in freely moving rats.
Methods: Rats were implanted permanently with an epidural cup placed over the right parietal cortex with intact dura mater. Epidural screw-electrodes, secured to the cup, recorded local neocortical EEG activity.
Glucose is well accepted as the major fuel for neuronal activity, while it remains controversial whether lactate also supports neural activity. In hippocampal slice cultures, synaptic transmission supported by glucose was reversibly suppressed by lactate. To test whether lactate had a similar inhibitory effect in vivo, lactate was perfused into the hippocampi of unanesthetized rats while recording the firing of nearby pyramidal cells.
View Article and Find Full Text PDFThe spatial properties of the firing of hippocampal neurons have mainly been studied in (a) freely moving rodents, (b) non-human primates seated in a moveable primate chair with head fixed, and (c) epileptic patients subjected to virtual navigation. Although these studies have all revealed the ability of hippocampal neurons to generate spatially selective discharges, the detected firing patterns have been found to be considerably different, even conflicting, in many respects. The present cellular electrophysiological study employed squirrel monkeys (Saimiri sciureus), which moved freely on the walls and floor of a large test chamber.
View Article and Find Full Text PDFFew experiments have addressed the problem of cognitive map formation in non-human primates. Therefore, a paradigm was developed to assess spatial memory formation in squirrel monkeys (Saimiri sciureus) moving freely in three dimensions. While moving on the walls and floor of a large test chamber, the animals learned to collect pieces of cereal from baited food-ports interspersed among non-baited ports.
View Article and Find Full Text PDFIntracerebral drug-perfusion studies in animals can be very efficiently performed with the 'reverse-dialysis' procedure. In this procedure, drugs are delivered into the brain via an intracerebrally implanted microdialysis probe. Traditionally, in reverse-dialysis studies the flow of control and drug solutions in the microdialysis site is alternated by large and heavy valves placed far from the experimental animal.
View Article and Find Full Text PDF