Across studied vertebrates, the medial amygdala (MeA) is a central hub for relaying sensory information with social and/or survival relevance to downstream nuclei such as the bed nucleus of stria terminalis (BNST) and the hypothalamus. MeA-driven behaviors, such as mating, aggression, parenting, and predator avoidance are processed by different molecularly defined inhibitory and excitatory neuronal output populations. Work over the past two decades has deciphered how diverse MeA neurons arise from embryonic development, revealing contributions from multiple telencephalic and diencephalic progenitor domains.
View Article and Find Full Text PDFSocial behaviors are innate and supported by dedicated neural circuits, but the molecular identities of these circuits and how they are established developmentally and shaped by experience remain unclear. Here we show that medial amygdala (MeA) cells originating from two embryonically parcellated developmental lineages have distinct response patterns and functions in social behavior in male mice. MeA cells expressing the transcription factor Foxp2 (MeA) are specialized for processing male conspecific cues and are essential for adult inter-male aggression.
View Article and Find Full Text PDFIn terrestrial vertebrates, the olfactory system is divided into main (MOS) and accessory (AOS) components that process both volatile and nonvolatile cues to generate appropriate behavioral responses. While much is known regarding the molecular diversity of neurons that comprise the MOS, less is known about the AOS. Here, focusing on the vomeronasal organ (VNO), the accessory olfactory bulb (AOB), and the medial amygdala (MeA), we reveal that populations of neurons in the AOS can be molecularly subdivided based on their ongoing or prior expression of the transcription factors Foxp2 or Dbx1, which delineate separate populations of GABAergic output neurons in the MeA.
View Article and Find Full Text PDFSocial behaviors are innate and supported by dedicated neural circuits, but it remains unclear whether these circuits are developmentally hardwired or established through social experience. Here, we revealed distinct response patterns and functions in social behavior of medial amygdala (MeA) cells originating from two embryonically parcellated developmental lineages. MeA cells in male mice that express the transcription factor Foxp2 (MeA) are specialized for processing male conspecific cues even before puberty and are essential for adult inter-male aggression.
View Article and Find Full Text PDFChronic stress induces anhedonia in susceptible but not resilient individuals, a phenomenon observed in humans as well as animal models, but the molecular mechanisms underlying susceptibility and resilience are not well understood. We hypothesized that the serotonergic system, which is implicated in stress, reward, and antidepressant therapy, may play a role. We found that plasticity of the serotonergic system contributes to the differential vulnerability to stress displayed by susceptible and resilient animals.
View Article and Find Full Text PDF