Publications by authors named "Nanditha Mallesh"

Multi-parameter flow cytometry (MFC) is a cornerstone in clinical decision making for leukemia and lymphoma. MFC data analysis requires manual gating of cell populations, which is time-consuming, subjective, and often limited to a two-dimensional space. In recent years, deep learning models have been successfully used to analyze data in high-dimensional space and are highly accurate.

View Article and Find Full Text PDF

The wealth of information captured by multiparameter flow cytometry (MFC) can be analyzed by recent methods of computer vision when represented as a single image file. We therefore transformed MFC raw data into a multicolor 2D image by a self-organizing map and classified this representation using a convolutional neural network. By this means, we built an artificial intelligence that is not only able to distinguish diseased from healthy samples, but it can also differentiate seven subtypes of mature B-cell neoplasm.

View Article and Find Full Text PDF