The objective of this study was to compare the hydrological performance of an irrigated, 127 mm deep green roof, planted with vegetation native to the New York City area, to a conventional, non-irrigated, 100 mm deep green roof, planted with drought-tolerant Sedum spp. Four years of climate and runoff data from both green roofs were analyzed to determine seasonal stormwater retention. Empirical relationships between rainfall and runoff were developed for both roofs, and applied to historical rainfall data in order to compare stormwater retention values for different rainfall depths.
View Article and Find Full Text PDFThe objective of this study was to quantify the seasonal risk of salt damage to bioswale plants, soil, microbes, and downstream waterbodies. To do so, we measured sodium, chloride, and electrical conductivity levels at seven bioswales located in the Bronx, New York City, over 42 storm events during a three-year monitoring period. The bioswale with the greatest salt contamination (median 206 mg/L chloride) had a unique inlet design without any possibility of inlet bypass.
View Article and Find Full Text PDFThe objective of this study was to evaluate the impact of bioswales on nutrient pollution in an urban combined sewershed. This evaluation was based on two criteria: the ability of bioswales to (1) remove nutrient pollution from stormwater runoff directly and (2) decrease sewer overflow volumes, which indirectly reduces total sewershed nutrient pollution during a storm event. Bioswales' direct nutrient removal was determined by analyzing nitrogen and phosphorus levels in water samples at seven bioswales located in the Bronx, New York City (NYC) over 42 storm events, while a bioswale's indirect nutrient removal through combined sewer overflow reduction was estimated by quantifying water retention at one of the bioswales.
View Article and Find Full Text PDF