Publications by authors named "Nandadeva Yakandawala"

Chronic wounds are often caused or exacerbated by microbial biofilms that are highly resistant to antimicrobial treatments and that prevent healing. This study compared the antimicrobial and antibiofilm activity of nine topical wound treatments, comprising gels with different concentrations of poloxamer 407 (20-26%) and different pH levels (4-6) and containing polyhexanide (PHMB) as an antimicrobial agent; the effects of pH on wound gels containing this agent have not been previously reported. The wound gel formulations were tested against six common wound-associated microbial pathogens: , , , , , and .

View Article and Find Full Text PDF

Background: The commensal skin bacterium plays a role in the pathogenesis of acne vulgaris and also causes opportunistic infections of implanted medical devices due to its ability to form biofilms on biomaterial surfaces. Poly--(1→6)--acetyl-D-glucosamine (PNAG) is an extracellular polysaccharide that mediates biofilm formation and biocide resistance in a wide range of bacterial pathogens. The objective of this study was to determine whether produces PNAG, and whether PNAG contributes to biofilm formation and biocide resistance .

View Article and Find Full Text PDF

Biofilms are currently considered as a predominant lifestyle of many bacteria in nature. While they promote survival of microbes, biofilms also potentially increase the threats to animal and public health in case of pathogenic species. They not only facilitate bacteria transmission and persistence, but also promote spreading of antibiotic resistance leading to chronic infections.

View Article and Find Full Text PDF

P15-CSP is a biomimetic cationic fusion peptide that stimulates osteogenesis and inhibits bacterial biofilm formation when coated on 2-D surfaces. This study tested the hypothesis that P15-CSP coatings enhance 3-D osteogenesis in a porous but otherwise hydrophobic poly-(ɛ-caprolactone) (PCL) scaffold. Scaffolds of 84 µm and 141 µm average pore size were coated or not with Layer-by-Layer polyelectrolytes followed by P15-CSP, seeded with adult primary human mesenchymal stem cells (MSCs), and cultured 10 days in proliferation medium, then 21 days in osteogenic medium.

View Article and Find Full Text PDF

In the context of porous bone void filler for oral bone reconstruction, peptides that suppress microbial growth and promote osteoblast function could be used to enhance the performance of a porous bone void filler. We tested the hypothesis that P15-CSP, a novel fusion peptide containing collagen-mimetic osteogenic peptide P15, and competence-stimulating peptide (CSP), a cationic antimicrobial peptide, has emerging properties not shared by P15 or CSP alone. Peptide-coated surfaces were tested for antimicrobial activity toward Streptoccocus mutans, and their ability to promote human mesenchymal stem cell (MSC) attachment, spreading, metabolism, and osteogenesis.

View Article and Find Full Text PDF

Chronic wounds including diabetic foot ulcers, pressure ulcers, and venous leg ulcers are a worldwide health problem. As the traditional methods of treatment have proven ineffective against chronic wounds involving biofilms, there is an unmet clinical need for developing products with an antibiofilm component that inhibits and/or disrupts biofilms and thus make the biofilm-embedded bacteria more susceptible to antimicrobial therapy. We developed a DispersinB® antibiofilm enzyme-based wound spray for treating chronic wounds in conjunction with an antimicrobial.

View Article and Find Full Text PDF

We developed a highly efficient, biocompatible surface coating that disperses bacterial biofilms through enzymatic cleavage of the extracellular biofilm matrix. The coating was fabricated by binding the naturally existing enzyme dispersin B (DspB) to surface-attached polymer matrices constructed via a layer-by-layer (LbL) deposition technique. LbL matrices were assembled through electrostatic interactions of poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMAA), followed by chemical cross-linking with glutaraldehyde and pH-triggered removal of PMAA, producing a stable PAH hydrogel matrix used for DspB loading.

View Article and Find Full Text PDF

We demonstrated the production of poly-β-1,6-N-acetylglucosamine (PNAG) polysaccharide in the biofilms of Burkholderia multivorans, Burkholderia vietnamiensis, Burkholderia ambifaria, Burkholderia cepacia, and Burkholderia cenocepacia using an immunoblot assay for PNAG. These results were confirmed by further studies, which showed that the PNAG hydrolase, dispersin B, eliminated immunoreactivity of extracts from the species that were tested (B. cenocepacia and B.

View Article and Find Full Text PDF

Nearly one-third of the world's population, mostly women and children, suffer from iron malnutrition and its consequences, such as anaemia or impaired mental development. Iron fortification of food is difficult because soluble iron is either unstable or unpalatable, and non-soluble iron is not bioavailable. Genetic engineering of crop plants to increase iron content has therefore emerged as an alternative for iron biofortification.

View Article and Find Full Text PDF

beta-1,6-N-Acetylglucosaminidase (dispersin B), which cleaves poly-ss-(1,6)-linked N-acetylglucosamine, is encoded by dspB of Aggregatibacter actinomycetemcomitans. To enhance the production of dispersin B, we engineered dspB to transcribe mRNAs devoid of the trinucleotide ACA. Transcription and translation levels of ACA-less and wild-type dspB expressed in Escherichia coli (E.

View Article and Find Full Text PDF

Callus is an important intermediate tissue for the propagation of plants through tissue culture, as it can form new shoots, and hence plants, through somatic embryogenesis, a process whose underlying biochemical mechanisms are poorly understood. The involvement of kinases suggests that signalling through phosphorylation cascades may play an important role. In this report methods for labelling wheat (Triticum aestivum L.

View Article and Find Full Text PDF

The colonization of uropathogenic bacteria on urinary catheters resulting in biofilm formation frequently leads to the infection of surrounding tissue and often requires removal of the catheter. Infections associated with biofilms are difficult to treat since they may be more than 1,000 times more resistant to antibiotics than their planktonic counterparts. We have developed an antibiofilm composition comprising an N-acetyl-D-glucosamine-1-phosphate acetyltransferase (GlmU) inhibitor and protamine sulfate, a cationic polypeptide.

View Article and Find Full Text PDF