Publications by authors named "Nanda Vos"

Rationale: Polysensitization of patients who are allergic is a common feature. The underlying immunologic mechanism is not clear. The maturation status of dendritic cells (DCs) is considered to be important for priming naive T cells in the draining lymph nodes.

View Article and Find Full Text PDF

Dendritic cells are key initiators and regulators of the immune response. Dendritic cell commitment and function require orchestrated regulation of transcription. Gata1 is a transcription factor expressed in several hematopoietic lineages.

View Article and Find Full Text PDF

Inhalation of iloprost, a stable prostacyclin (PGI(2)) analog, is a well-accepted and safe treatment for pulmonary arterial hypertension. Although iloprost mainly acts as a vasodilator by binding to the I prostanoid (IP) receptor, recent evidence suggests that signaling via this receptor also has antiinflammatory effects through unclear mechanisms. Here we show in a murine model of asthma that iloprost inhalation suppressed the cardinal features of asthma when given during the priming or challenge phase.

View Article and Find Full Text PDF

Rationale: Asthma is associated with increased expression of a typical array of genes involved in immune and inflammatory responses, including those encoding the prototypic Th2 cytokines interleukin (IL) 4, IL-5, and IL-13. Most of these genes contain binding sites for activator protein-1 (AP-1) within their promoter and are therefore believed to depend on AP-1 for their expression, suggesting that this transcription factor could be of particular importance in asthma pathophysiology.

Objective: To clarify the role of AP-1 in the effector phase of pulmonary allergy.

View Article and Find Full Text PDF

Although dendritic cells (DCs) play an important role in sensitization to inhaled allergens, their function in ongoing T helper (Th)2 cell-mediated eosinophilic airway inflammation underlying bronchial asthma is currently unknown. Here, we show in an ovalbumin (OVA)-driven murine asthma model that airway DCs acquire a mature phenotype and interact with CD4(+) T cells within sites of peribronchial and perivascular inflammation. To study whether DCs contributed to inflammation, we depleted DCs from the airways of CD11c-diphtheria toxin (DT) receptor transgenic mice during the OVA aerosol challenge.

View Article and Find Full Text PDF

Background: Airway dendritic cells (DCs) are crucial for the generation of TH2 cells from naive T cells during sensitization and for reactivation of primed TH2 cells on allergen challenge in mouse models of asthma. It is unknown whether CD80/CD86 costimulation is necessary during both phases of the response because primed T cells rely less on costimulatory molecules compared with naive T cells.

Objective: We sought to study the contribution of CD80/CD86 costimulatory molecules on DCs during sensitization or challenge in a mouse model of asthma.

View Article and Find Full Text PDF

Tolerance is the usual outcome of inhalation of harmless antigen, yet T helper (Th) type 2 cell sensitization to inhaled allergens induced by dendritic cells (DCs) is common in atopic asthma. Here, we show that both myeloid (m) and plasmacytoid (p) DCs take up inhaled antigen in the lung and present it in an immunogenic or tolerogenic form to draining node T cells. Strikingly, depletion of pDCs during inhalation of normally inert antigen led to immunoglobulin E sensitization, airway eosinophilia, goblet cell hyperplasia, and Th2 cell cytokine production, cardinal features of asthma.

View Article and Find Full Text PDF

Nitric oxide (NO) possesses antiinflammatory effects, which may be exerted via its ability to inhibit the transcription factor, NF-kappaB. A commonly proposed mode of action for inhibition of NF-kappaBbyNO involves interference with NF-kappaB binding to DNA. Because activation of inhibitory kappaB kinase (IKK), the prerequisite enzyme complex necessary to induce NF-kappaB, is subject to redox regulation, we assessed whether IKK could present a more proximal target for NO to inhibit NF-kappaB activation.

View Article and Find Full Text PDF

Mouse models of allergic asthma are increasingly used to study the immunopathology of this complex disorder. The degree and type of airway inflammation is often studied by determination of differential cell counts on cytospins of bronchoalveolar lavage fluid (BALF) cells stained with May-Grünwald Giemsa, in which the separation of eosinophils (eos) from neutrophils (neutro) and of monocytes (mono) from activated T cells can be quite problematic. In this study, we compared differential cell counts based on morphological criteria on May-Grünwald Giemsa stained cytospins with a newly developed flow cytometric method.

View Article and Find Full Text PDF

Asthma is characterized by infiltration of the airway wall with eosinophils. Although eosinophils are considered to be effector cells, recent studies have reported their ability to activate primed Th2 cells. In this study, we investigated whether eosinophils are capable of presenting Ag to unprimed T cells in draining lymph nodes (DLN) of the lung and compared this capacity with professional dendritic cells (DC).

View Article and Find Full Text PDF