Publications by authors named "Nanda Verhoeven-Duif"

To stimulate cell growth, the protein kinase complex mTORC1 requires intracellular amino acids for activation. Amino-acid sufficiency is relayed to mTORC1 by Rag GTPases on lysosomes, where growth factor signaling enhances mTORC1 activity via the GTPase Rheb. In the absence of amino acids, GATOR1 inactivates the Rags, resulting in lysosomal detachment and inactivation of mTORC1.

View Article and Find Full Text PDF

Direct infusion-high-resolution mass spectrometry (DI-HRMS) allows for rapid profiling of complex mixtures of metabolites in blood, cerebrospinal fluid, tissue samples and cultured cells. Here, we present a DI-HRMS method suitable for the rapid determination of metabolic fluxes of isotopically labeled substrates in cultured cells and organoids. We adapted an automated annotation pipeline by selecting labeled adducts that best represent the majority of C and/or N-labeled glycolytic and tricarboxylic acid cycle intermediates as well as a number of their derivatives.

View Article and Find Full Text PDF

NAD synthetase 1 (encoded by the gene NADSYN1) is a cytosolic enzyme that catalyzes the final step in the biosynthesis of nicotinamide adenine dinucleotide (NAD+) from tryptophan and nicotinic acid. NADSYN1 deficiency has recently been added to the spectrum of congenital NAD+ deficiency disorders. To gain insight into the metabolic consequences of NADSYN1 deficiency, the encoding gene was disrupted in A549 and HEK293T cells, and the metabolome was profiled in the presence of different NAD+ precursors, including tryptophan, nicotinamide and nicotinic acid.

View Article and Find Full Text PDF
Article Synopsis
  • Early diagnosis of inherited metabolic diseases (IMDs) is crucial for effective treatment and better patient outcomes, but the variety of these diseases complicates timely diagnosis.
  • Untargeted metabolomics, using advanced techniques like direct infusion high-resolution mass spectrometry (DI-HRMS), shows promise for diagnosing IMDs but remains underused in clinical settings compared to traditional methods.
  • A year-long study found that while targeted assays and untargeted metabolomics provided strong correlations for many metabolites, DI-HRMS identified additional metabolic disorders in some patients that targeted assays had missed, highlighting its potential for broader diagnostic applications.
View Article and Find Full Text PDF

Nodding syndrome is a neglected, disabling and potentially fatal epileptic disorder of unknown aetiology affecting thousands of individuals mostly confined to Eastern sub-Saharan Africa. Previous studies have identified multiple associations-including , antileiomodin-1 antibodies, vitamin B deficiency and measles virus infection-yet, none is proven causal. We conducted a case-control study of children with early-stage nodding syndrome (symptom onset <1 year).

View Article and Find Full Text PDF

The malate-aspartate shuttle (MAS) is a redox shuttle that transports reducing equivalents across the inner mitochondrial membrane while recycling cytosolic NADH to NAD. We genetically disrupted each MAS component to generate a panel of MAS-deficient HEK293 cell lines in which we performed [U-C]-glucose tracing. MAS-deficient cells have reduced serine biosynthesis, which strongly correlates with the lactate M+3/pyruvate M+3 ratio (reflective of the cytosolic NAD/NADH ratio), consistent with the NAD dependency of phosphoglycerate dehydrogenase in the serine synthesis pathway.

View Article and Find Full Text PDF

Recently, biallelic variants in PLPBP coding for pyridoxal 5'-phosphate homeostasis protein (PLPHP) were identified as a novel cause of early-onset vitamin B-dependent epilepsy. The molecular function and precise role of PLPHP in vitamin B metabolism are not well understood. To address these questions, we used PLPHP-deficient patient skin fibroblasts and HEK293 cells and YBL036C (PLPHP ortholog)-deficient yeast.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers analyzed urine samples from neuroblastoma patients and controls, measuring various catecholamine metabolites to assess the reliability of spot versus 24-hour urine samples.
  • * Results showed that both spot and 24-hour urine samples yielded similar diagnostic sensitivity, leading to the recommendation of using spot urine as the standard method, with a broader panel of metabolites providing better diagnostic accuracy.
View Article and Find Full Text PDF

Objectives: To assess whether viral, bacterial, metabolic, and autoimmune diseases are missed by conventional diagnostics among children with severe acute encephalopathy in sub-Saharan Africa.

Study Design: One hundred thirty-four children (6 months to 18 years) presenting with nontraumatic coma or convulsive status epilepticus to 1 of 4 medical referral centers in Uganda, Malawi, and Rwanda were enrolled between 2015 and 2016. Locally available diagnostic tests could be supplemented in 117 patients by viral, bacterial, and 16s quantitative polymerase chain reaction testing, metagenomics, untargeted metabolomics, and autoimmune immunohistochemistry screening.

View Article and Find Full Text PDF

The 22q11.2 deletion syndrome (22q11.2DS) is characterized by a well-defined microdeletion and is associated with increased risk of neurodevelopmental phenotypes including autism spectrum disorders (ASD) and intellectual impairment.

View Article and Find Full Text PDF

Objective: Determine vitamin B12 threshold levels below which additional testing of methylmalonic acid (MMA) and/or homocysteine (Hcy) is useful to diagnose metabolic vitamin B12 deficiency in patients with polyneuropathy, and how vitamin B12, MMA and Hcy levels relate to the effect of supplementation therapy.

Methods: In a retrospective cohort study of 331 patients with polyneuropathy, vitamin B12, MMA and Hcy were measured. Linear regression models with vitamin B12 as dependent and Hcy or MMA as covariate were compared, to assess which was best related to vitamin B12.

View Article and Find Full Text PDF

Inborn errors of metabolism (IEMs) comprise a diverse group of individually rare monogenic disorders that affect metabolic pathways. Mutations lead to enzymatic deficiency or dysfunction, which results in intermediate metabolite accumulation or deficit leading to disease phenotypes. Currently, treatment options for many IEMs are insufficient.

View Article and Find Full Text PDF

Mucopolysaccharidoses (MPS) are devastating inherited diseases treated with hematopoietic cell transplantation (HCT). However, disease progression, especially skeletal, still occurs in all patients. Secondary inflammation has been hypothesized to be a cause.

View Article and Find Full Text PDF

Hyperprolinemia Type I and II are genetic metabolic disorders caused by disrupted proline degradation. It has been suggested that hyperprolinemia is associated with increased risk of developmental and mental disorders but detailed information on the psychiatric phenotype in hyperprolinemic patients is limited. Following PRISMA guidelines, we carried out a systematic review to clarify psychiatric phenotypes in patients with hyperprolinemia.

View Article and Find Full Text PDF

The diagnostic evaluation of Diamond Blackfan Anaemia (DBA), an inherited bone marrow failure syndrome characterised by erythroid hypoplasia, is challenging because of a broad phenotypic variability and the lack of functional screening tests. In this study, we explored the potential of untargeted metabolomics to diagnose DBA. In dried blood spot samples from 18 DBA patients and 40 healthy controls, a total of 1752 unique metabolite features were identified.

View Article and Find Full Text PDF

Over the last few years, various inborn disorders have been reported in the malate aspartate shuttle (MAS). The MAS consists of four metabolic enzymes and two transporters, one of them having two isoforms that are expressed in different tissues. Together they form a biochemical pathway that shuttles electrons from the cytosol into mitochondria, as the inner mitochondrial membrane is impermeable to the electron carrier NADH.

View Article and Find Full Text PDF

Pyridoxine-dependent epilepsy (PDE-ALDH7A1) is an autosomal recessive condition due to a deficiency of α-aminoadipic semialdehyde dehydrogenase, which is a key enzyme in lysine oxidation. PDE-ALDH7A1 is a developmental and epileptic encephalopathy that was historically and empirically treated with pharmacologic doses of pyridoxine. Despite adequate seizure control, most patients with PDE-ALDH7A1 were reported to have developmental delay and intellectual disability.

View Article and Find Full Text PDF

Purpose: Dioxygenases are oxidoreductase enzymes with roles in metabolic pathways necessary for aerobic life. 4-hydroxyphenylpyruvate dioxygenase-like protein (HPDL), encoded by HPDL, is an orphan paralogue of 4-hydroxyphenylpyruvate dioxygenase (HPD), an iron-dependent dioxygenase involved in tyrosine catabolism. The function and association of HPDL with human diseases remain unknown.

View Article and Find Full Text PDF

The diagnostic evaluation and clinical characterization of rare hereditary anemia (RHA) is to date still challenging. In particular, there is little knowledge on the broad metabolic impact of many of the molecular defects underlying RHA. In this study we explored the potential of untargeted metabolomics to diagnose a relatively common type of RHA: Pyruvate Kinase Deficiency (PKD).

View Article and Find Full Text PDF

Pyridoxine-dependent epilepsy (PDE) is a rare autosomal recessive disease caused by mutations in the ALDH7A1 gene leading to blockade of the lysine catabolism pathway. PDE is characterized by recurrent seizures that are resistant to conventional anticonvulsant treatment but are well-controlled by pyridoxine (PN). Most PDE patients also suffer from neurodevelopmental deficits despite adequate seizure control with PN.

View Article and Find Full Text PDF

Mucopolysaccharidoses (MPSs) are multiorgan devastating diseases for which hematopoietic cell transplantation (HCT) and, to a lesser extent, enzyme replacement therapy have substantially altered the course of the disease. Furthermore, they have resulted in increased overall survival, especially for Hurler disease (MPS-1). However, despite the identification of clinical predictors and harmonized transplantation protocols, disease progression still poses a significant burden to patients, although at a slower pace.

View Article and Find Full Text PDF

Next-generation sequencing and next-generation metabolic screening are, independently, increasingly applied in clinical diagnostics of inborn errors of metabolism (IEM). Integrated into a single bioinformatic method, these two -omics technologies can potentially further improve the diagnostic yield for IEM. Here, we present cross-omics: a method that uses untargeted metabolomics results of patient's dried blood spots (DBSs), indicated by Z-scores and mapped onto human metabolic pathways, to prioritize potentially affected genes.

View Article and Find Full Text PDF

Dravet syndrome is caused by dominant loss-of-function mutations in SCN1A which cause reduced activity of Nav1.1 leading to lack of neuronal inhibition. On the other hand, gain-of-function mutations in SCN8A can lead to a severe epileptic encephalopathy subtype by over activating NaV1.

View Article and Find Full Text PDF